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Interaction of a soliton with a localized gain in a fiber Bragg grating
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A model of a lossy nonlinear fiber grating with a “hot spot,” which combines a local gain and an attractive
perturbation of the refractive index, is introduced. A family of exact solutions for pinned solitons is found in
the absence of loss and gain. In the presence of the loss and localized gain, an instability threshold of the zero
solution is found. If the loss and gain are small, it is predicted what soliton is selected by the energy-balance
condition. Direct simulations demonstrate that only one pinned soliton is stable in the conservative model, and
it is a semiattractor solitons with a larger energy relax to it via emission of radiation, while those with a
smaller energy decay. The same is found for solitons trapped by a pair of repulsive inhomogeneities. In the
model with the loss and gain, stable pinned pulses demonstrate persistent internal vibrations and emission of
radiation. If these solitons are nearly stationary, the prediction based on the energy balance underestimates the
necessary gain by 10—150due to radiation logsf the loss and gain are larger, the intrinsic vibrations of the
pinned soliton become chaotic. The local gain alone, without the attractive perturbation of the local refractive
index, cannot maintain a stable pinned soliton. For collisions of moving solitons with the “hot spot,” passage
and capture regimes are identified, the capture actually implying splitting of the soliton.
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[. INTRODUCTION in fiber gratings, which were predicted long aff, is an
issue of great intere$®]. The standard mathematical model
Solitons in any physical medium are subject to attenuatiorof the nonlinear fiber grating predicts a whole family of zero-
due to dissipation, hence it is necessary to apply gain thatelocity solitons[4—6], a part of which is stablg10,11]. If
can support the solitons. A possibility that may find interest-realized experimentally, such a soliton would represent a
ing physical applications is to create a localized gain, whichpulse of standing light, with its left- and right-traveling com-
will be a trap for solitons in a lossy medium. In terms of ponents being in a permanent dynamical equilibrium.
optical solitons, this can be easily realized for spatial solitons The BG solitons which have been observed in the experi-
in a planar waveguide, where the gain may be applied to aent up to date are moving ones, their velocity beinfs%
narrow strip. However, for spatial solitons gain is a redun-of the maximum group velocity of light in the fibg¥]. The
dancy, as they are supported simply by the energy fluxjuest for zero-velocity solitons may be facilitated by means
through the soliton itself. Besides that, in this work it will be of a local defect in the BG that exerts an attractive force on
shown that, in the simplest case when the spatial solitons a@ soliton, having thus a potential to be a soliton t(apte
governed by the nonlinear Scldinger (NLS) equation, a that a local defect may trap light in the fiber grating via the
pinned soliton supported by the localized gain can never b&ur-wave mixing without formation of a solitof2]). Be-
stable. On the other hand, realization of the local-gain tragsides its profound physical importanf3], such a soliton
for usual temporal solitons is impossible, as such soliton rungrap is also promising for the fiber-sensing technoloy].
(for instance, in an optical fibgi]) with the group velocity The interaction of the soliton with an attractive defect in
of light. the form of a local suppression of BG was studied recently in
An unique possibility to create a gain-induced trap in aRefs.[13] and[14]. The latter work also considered a trap
lossy medium is offered by a fiber grating, i.e., a Bragg gratcombining the local BG suppression and a change in the
ing (BG) written on an optical fiber. Fiber gratings are a refractive index(these two effects may come together as a
basis for many photonic devicgg]. A challenging possibil- manifestation of a local inhomogeneity in the BG-carrying
ity is to use fiber gratings for the creation of pulses of slowfiber). As a result, it has been demonstrated that a gap soliton
light, which is a topic of great current interdst]. The pos- may indeed be pinned by the local defect, and, moreover, a
sibility of the existence of slow pulses suggests to try a localharrow (5-functiona) defect uniquely selects parameters of
gain-induced trap for solitons. the stable trapped solitojil4] (this feature is described in
In fiber gratings, solitons exist due to the interplay be-more detail below
tween the Bragg reflection and Kerr nonlinearity of the BG- However, a trapped soliton will be destroyed by fiber loss.
carrying fiber[4]. These solitons were predicted analytically Indeed, taking into regard that the best fiber gratiuged as
[5,6], and then they were created in the experinj@ht Ex-  dispersion compensators in optical telecommunicatiaéb$
cept for the case in which the BG soliton is very brg&ll  have the attenuation rate0.2 dBcni® (in hybrid grating
this species of optical solitons is distinct from the usual NLSwaveguides, using glass and a sol-gel material, the attenua-
solitons[1] in ordinary nonlinear optical fibers. tion may be lowered to 0.1 dB cm [16]), it is easy to esti-
As it was mentioned above, search for very slow solitonsmate that a standing soliton will be destroyed during the time
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=<5 ns. Therefore, it is necessary to support the trapped solized gain. An instability-onset threshold is found, and it is
ton by means of a locally applied optical gain, which is tan-demonstrated that the instability does not take place unless
tamount to the above-mentioned soliton trap induced by lothe gain has an imaginary part. For the comparison’s sake,
cal gain. A related problem is a possibility to capture awe also briefly consider an allied model problem, viz., the
moving soliton by the local gain. These issues are the maimstability induced by a “hot spot” in the lossy NLS equa-
subjects of the present work. Besides the fundamental intetion, which produces quite similar results. Then, we produce
est to having permanently maintained trapped optical solia family of exact analytical solutions for solitons pinned by
tons, they may also be interesting for applications, such athe local inhomogeneity of the refractive index, in the ab-
optical memory. sence of loss and gain. Another analytical result predicts
The local gain can be provided, for instance, by a shortvhat particular pinned soliton is selected by the balance of
resonantly doped segment in the BG-carrying fiber. In thighe loss and gain, provided that they are small perturbations.
connection, we note that the moving BG soliton that wasA soliton selected by the energy balance is also found in the
observed for the first time in the fiber grating had the tem4ossy NLS equation with the hot spdin that case, it is
poral width =200 ps[7]. Taking into regard the Lorentzian always unstable
contraction(as it was mentioned above, the soliton was mov-  Section Il reports results of direct simulations of pinned
ing at a velocity equat 75% of the maximum group veloc- solitons, in both the conservative version of the model, and
ity), the same soliton, if stopped, would have the spatiain the full one. A surprising result is that, in the conservative
width on the order of a few centimeters. Thus, the locallymodel, asingle pinned soliton, out of their continuous fam-
pumped segment of the fiber may be approximated & a ily, is stable. If the initially created soliton has larger energy,
function (which we assume in the analytical model belafy it relaxes, via emission of radiation, to the stable one, and if
roughly speaking, its size iss1 mm. Note that the maxi- the energy of the initial soliton is smaller than that of the
mum gain that can be provided by an Er-doped amplifier isstable one, the pulse decays into radiation; the former obser-
=5 dBcm ! [17]. Comparing this to the above-mentioned vation can be explained by known results for the stability of
minimum damping rate 0.1 dB cm, we conclude that the the ordinary solitons in the unperturbed BG mofdi,11]. A
proposed scheme may be self-consistent. similar result is also obtained, in the framework of the con-
Thus, the model to be formulated below assumes the locaervative model, at the end of Sec. Il for a pair of repulsive
gain in the form of thes function (in the numerical part of defects: in the case when they can hold a soliton at the mid-
the work, a smooth approximation to tégunction is usefi ~ point between them, any pulse either relaxes to a uniquely
The model also includes an imaginary part of the localizedselected soliton, or decay# the pair of repulsive inhomo-
gain, which actually accounts for a local perturbation of thegeneities cannot hold a soliton, it splits the soliton into wo
fiber's refractive indexnote that the dopant, if used to in- It is relevant to mention that a nonlinear BG structure with
duce the local gain, may indeed affect the local refractivewo local defects was very recently studied as a promising
indeX. The imaginary part is necessary, as it will be seenmodel for all-optical switching18].
that pure gain cannot maintain a pinned soliton in a stable In the full model, all the pinned solitons demonstrate per-
state. As for the size of the refractive-index perturbatdon  sistent intrinsic vibrations; depending on the ratio of the loss
it will be seen thatsn=0.1 is definitely sufficient to stably and gain, and on the strength of the attractive refractive-
trap a soliton. In this respect, it is relevant to mention that dndex inhomogeneity, the amplitude of the vibrations may be
dopant added to a silica fiber usually induces a refractivémall or large. In the former case, the pinned soliton may be
index changeSn~0.05, while in a polymer fiber itis-0.2.  regarded as an approximately stationary one, then the above-
The latter value can readily produce a stable pinned state ¢pentioned analytical prediction of the soliton selected by the
the soliton, and the former one may be sufficient too. balance between the loss and gain gives an error between
Arelatively large jump of the refractive index between the 10% and 15%, which may be explained by extra radiation
doped segment and the rest of the fiber may induce an addPss.
tional effect, viz., reflection of light, although the reflection  In Sec. IV, collision of a moving soliton with the hot spot
may be smothered by a sufficiently smooth profile of distri-iS considered by means of direct simulations. As a result,
bution of the dopant. An additional term in the basic modelregions of passage and capture are identified in the soliton’s
[see Egs(1) and(2) below], induced by the reflection, would Parameter space in both the conservative and full models. In
be the same which formally accounts for a local perturbatiorfact, the capture is incomplete: a part of the soliton’s energy
of the BG reflectivity. The latter type of the conservative gets trapped, giving rise to a pinned soliton, while the other
perturbation was considered in REF4]), a conclusion being part passes and rearranges itself into another soliton. If the
that its effect is quite similar to that directly produced by theinhomogeneity is strong, a conspicuous part of the energy
refractive-index perturbation, which is directly included in may bounce back.
Egs.(1) and(2). For this reason, we do not consider the local
reflection as a separate perturbation in this w@mkany case,
it can be easily added, if necessary Il. THE MODEL AND ANALYTICAL RESULTS
The paper is organized as follows. In Sec. Il we formulate
the model, and produce some analytical results. First of all,
we consider the stability of the zero solution against small A localized gain inserted into a fiber grating is modeled
perturbations in the presence of the uniform loss and localby a §-function term added to the standard BG model, which

A. The model equations
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includes coupled equations for the amplitudes of the rightwhere the square root is defined so that its real part is posi-
and left-traveling electromagnetic wavegx,t) anduv(x,t) tive, andB.. = —[(x+ivy) Fik]A. . Further, the integration

[4]. The full model is then of the linearized equations in an infinitesimal vicinity xf
o 5 ) _ _ =0 yieldsA,=A_e", B,=B_e .
ugtiuycto+(Jul*+ 2fv[Hu=—iyu+ilsgu, (1) Eliminating the amplitudes. andB.. by means of these

L 2 2 _ _ relations, we obtain an equation
ivi—ivytu+(Jo]*+2lulHv=—iyw+il8(x)v, (2

. . . . . +iy—i )
where the maximum group velocity of light is normalized to u:e—Z(Fsz), (10)
be 1, the nonlinear terms account for the self- and cross- xtly+ik

phase-modulation induced by the Kerr effect, the linear cou-

plings represent the mutual conversion of the waves due ty)vheée exia(r)essz(j)(g) was SUb?.t'E;Jttid fO.F : F]lnally, combin- ht
the resonant Bragg scatteririthe conversion coefficient is "9 Eds-(10) and(9), we can find the eigenfrequency soug

also normalized to be 1). On the right-hand side of Efjs.
and(2), the fiber loss parameteris real and positive, while

= —iy+ i +i
the local-gain strengtl’ may be complex, X=~lytsgrsinlz)cosily +iT5), (D

where the sign multiplier in front of the second term pro-
vides for the fulfillment of the above-mentioned condition
its positive real part being the gain proper, while the imagi-ReK>O- ) _
nary part accounts for a localized perturbation of the refrac- A straightforward consequence of Ed) is an expres-
tive index(note that,>0 corresponds to a local increase of Sion for the instability growth rate,
the refractive index

A stationary solution that represents a soliton trapped by
the “hot spot,” is sought for as

I=T,+il,, 3

Im xy=—y+(sinhl’y)|sinT,|. (12

Thus, the localized gain gives rise to the instability of the

u(x,t)=U(x)exp(—it cosé), trivial solution, provided that it is strong enough:
_ )
v(x,t)=V(X)exp(—it cosb), SinhT',>sinH{ (I'}) o] = |sin71“ - (13)
whered is a parameter of the soliton family. The substitution ?
of Eq. (4) into Egs.(1) and(2) leads to equations Note that the instability iSmpossiblein the absence of the
local refractive-index perturbatioh,. The instability-onset
[i i+C080+iy—iFé(X)+(|U|2+2|V|2) U+V=0 condition (13) simplifies in the limiting case when both the
dx ’ loss and gain parameters are snfadhile I',, is not necessar-
(B ily small):
S coso+i —iT8(x)+(|V[2+2|U|?) [V+U=0 Iy>(Ty) .~ 14
dx Y ' 1 ( 1)cr~|SinF2| . ( )
(6)

At last, we notice that the instability is oscillatory: as it fol-
B. Stability of the zero solution lows from Eq.(11), Rex#0, unless cds,=0.

As the onset of instability in a system combining uniform
loss and local gain is a simple but new issue, for the com-
arison’s sake it is relevant to briefly consider it in a similar

odel, viz., the NLS equation:

We start the analysis with the linearized version of Eqs
(1) and(2), in order to analyze the stability of the zero solu-
tion in the presence of the localized gain. An eigenmode o
small perturbations is sought for as

_ ; 1
u(x,t) =Aexp(—ixt—«x), . iU+ 5 DUyt |U]u=—iyu+(iT1=T) 800U, (19
7
v(x,t)=B,exp —ixt—kx) at x>0,
whereD is the spatial-dispersion coefficient,andI’; , hav-

u(x,t)=A_exp( —ixt+«x), ing the same meaning as above. If the variahte Eq. (15)
(8) is replaced by the propagation distarzcandx is realized as
v(Xx,t)=B_exp —iyt+«x) at x<O0, the transverse coordinate in a planar lossy waveguide, Eq.

(15 may be interpreted as describing spatial solitons in the
where the frequency may be complex, its imaginary part above-mentioned case when the gain is applied along a nar-
being the instability growth rate, and must have a positive row strip in the waveguide. In fact, the NLS model is a limit
real part. Substituting this into the linearized equations yieldsase of the BG system for small-amplitude solit¢see, e.g.,

Ref. [8]); accordingly, Eq(15) is a small-amplitude limit of

k=\1—(x+iy)? 9 Egs.(1) and(2). Nevertheless, it is pertinent to consider the
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NLS model parallel to the BG one, as it will help to under-
stand the results for the BG system.

A perturbation mode in linearized equati@b) is sought
for as[cf. Egs.(7) and(8)]

u(x,t)y=A,exp(—iyxt—«x) at x>0,

: (16)
u(x,t)=A_exp(—ixt+xx) at x<O0,

with Rex>0. The substitution of Eq16) into the linearized
version of Eq.(15) yields
x=—[(DI2)k*+iy] (17)

and the integration of Eq15) in an infinitesimal vicinity of
x=0 leads toA,=A_, and
DK:FZ_iFl. (18)

Note that the necessary condition/Re0 and Eq.(18) show
that, in fact, the perturbation modéd6) exists only in the
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1 sing@
U(x)=

V3 cosr{ (x+asgnx)

—. (23
sm0—§6

where sgix==*1 for positive and negativg, and the real
parametem is determined by the relation

tan(T',/2)

tani(asing) = tar(TZ)

(24)

A corollary of the expression®3) and (24), which will be
used below, is

|U(x=0)|? (25

2
§(cosl“2— C0s#b).

From Eq.(24) it follows that the solution exists not in the
whole interval 6< <, where the ordinary gap solitons are
found, but in a region determined by the constraint that

casel',D>0. It is easy to understand the meaning of the|tanh@sin#)|<1, i.e.,|tan(",/2)| <tan(6/2), or

latter condition: the inhomogeneity &tractivein this case,
hence it can support the local mode.

The substitution of Eq(18) into Eq. (17) yields a final
result

As it follows from Eq.(19), the instability-onset condition,
Imy>0, means, in the present case,

(19

(Fp—=il?
—2D +1y|.

I'1>(T'1)e=Dy/T>. (20)

Thus, as well as in the case of the hot spot in BG, 26)

demonstrates that the hot spot in the NLS model cannot give
rise to the instability, unless it contains the imaginary part.

Unlike the BG model, the additional conditidi,D>0 is
also necessary for the instability.

C. An exact solution in the conservative model

An exact solution for the pinned soliton is available for
the conservative version of the full nonlinear model, wjth
=I";=0. In this case, it is easy to see that E@®.and (6)
admit an invariant reductioriy(x)=—U*(x) (the asterisk
stands for the complex conjugatignvhich leads to a single
equation

gx He0sO+T28(x) U+3JUj2U—U*=0.

(21

As it follows from the integration of Eq(21) around the

point x=0, the solution must satisfy a boundary condition
U(x=+0)=U(x=—-0)expil'y). (22

An exact solitonlike solution to Eq21), supplemented by
condition (22), can be found, following the pattern of the

exact solution for the ordinary gap soliton in the model with

I',=0 [5]:

IT,l<6<m (26)
(which implies that the solutions exist only|if,|< ).

Although the exact solutions found above exist for either
sign of I',, it is expected that only in the cadg>0 they
may be stable, as in this case the local inhomogeragity
tracts the soliton (which is natural, as positivé, corre-
sponds to a local enhancement of the refractive index, and a
bright soliton is always attracted to an optically denser spot
[14]. In particular, in the case of smdll, the soliton may be
regarded as a quasiparticle in an effective inhomogeneity-
induced potential

8F2 S|r120
"3 cosh2&sin6)+cosh’

Wi(6)=— (27)

where ¢ is a displacement of the soliton’s center from the
point x=0 [14]. It is obvious that this potential indeed cor-
responds to the attraction and repulsion in the cases0
andI',<0.

Note that the exact solution is a single-humped one, with
a maximum at the point=0, if I',>0; in the opposite case,
the solution is double humped, with a local minimumxat
=0 and local maxima at=*|al, as in this case Eq24)
givesa<0. In the limiting cased—|I",|—0 [see Eq(26)],
Eq. (25 shows that|U(x=0)| vanishes, i.e., the soliton
pinned by the attractive inhomogeneity, with>0, reduces
to zero, while the unstable two-humped state pinned by the
repulsive inhomogeneity, with',<<0, goes over into a pair
of two infinitely separated solitons with=—1T",.

D. The first-order approximation for the full model

In the casey=1";=0, Eqgs.(1) and(2) conserve the net
energy

e= | Tluoor+ ool Pdx @9
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FIG. 1. Analytically predicted solution branches for the pinned soliton in the case of weak loss and gain. Shevit} igs the stress
parameted’; /y. (a) An example of the casE,< /2 is displayed withl',= 7/4. (b) An example of the casE,> /2 is displayed with
I';=3w/4. (c) [',==/2. (d) I',=0. In the last case, nontrivial solutions appear at the ppin®.7442r, I', / y=1.3801, and at large values
of I'y /y the continuous curve asymptotically approaches the horizontal axis. In all the panels, the dashed lines show a formal continuation
of the solutions in the unphysical regiors<I',, and 6> 7. In the panelga), (b), and(c), the trivial solution,6—1I',=0, is shown by the
solid line where it is stable; in the case corresponding to the gdnedll the axisd=0 corresponds to the stable trivial soluti¢Note that
all quantities plotted are dimensionless.

In the presence of the loss and gain, the exact evolutios the pinned soliton may only be stablelis>0, we con-

equation for the energy is sider this case. Note also that, according to Exf), we
should constrain the consideration to the intergall’,, as
dE otherwise the pinned solitons do not exist in the zero ap-

a:—27E+2r1[|U(X)|2+|U(X)|2]|x:0. (29 proximation (y=I';=0).
The pinned-soliton selected by E(B1) is expected to

If the coefficientsy andI'; are treated as small perturba- appear, with the ?ncrea_se of tlstr(_ess par_ameteFl_/y, asa
tions, the balance condition for the energf/dt=0, may result of some bifurcation. The inspection of Fig. 1, which

select a particular solution, from the family of the exact so-disPlays @—I'2) vs I';/y, as found from Eq(31), shows
lutions (23) of the conservative model, which remains, to thethat the situation is qualitatively different in the cadés
first approximation, a stationary pinned soliton in the full <7/2 andI';> /2.
model. In the former case, @angent(saddle-nodg bifurcation
The balance condition following from E¢29) demands  [19] occurs at a minimum valud / y) min of the stress pa-
rameter at which Eq31) has a physical solution fo#, and
YE=T,[|U(x=0)|2+|V(x=0)|2]. (30) two solutions exist forl'y/y>(I"1/¥)min- An additional
analysis of Eq(31) demonstrates that, with the variation of

_ . i o I'5, the value [U1/y)min attains an absolute minimum,
Substituting, in the first approximation, unperturbed SOIUT1/7=1, atT,= /2.

tions (23) and(24) into Eq. (30), and taking into regard the With the increase of /vy, the lower solution branch that
definition (28), the balance condition can be cast, after SOME s at the saddle-nodle bifurcation pdisge Fig. 1a)] hits

algebra, in a simple form the limit point 6=1", [see Eq.(26)], where it degenerates
into the zero solution, according to E@®5). Equation(31)
-1 Iy 31) shows that this happens at the paiht/y=1/sil’,. On the

cosl’,—cosé - vy other hand, it was shown abojsee Eq(14)] that, precisely
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at the same point, the zero solution becomes unstable, in trever, direct numerical simulations presented below demon-
limit of small I'; and y. According to the general stability- strate that, in the casgé,=0, the pinned soliton is always
exchange principle[19], the fact that the zero-solution unstable against the displacement of its center from the point
branch gets unstable after its collision with another solutiorx=0.
branch implies that the latter branch was already unstable. It may be relevant to compare these results with those that
Therefore, we conclude that the branch that appears at ttean be obtained for pinned solitons in the NLS model con-
saddle-node bifurcation and ceases to exist hitting the zertaining the loss and “hot spot,” see E(L5). NLS solitons
solution, is an unstable saddle. may only exist ifD>0, therefore we adopt the normaliza-
The other(uppe) branch generated by the saddle-nodetion D=1 in Eq. (15), and it makes sense to consider only
bifurcation[Fig. 1(a)] continues until it attains the maximum the case when the inhomogeneity is attractive, L8>0,
value #= 7 relevant to the physical solutions, which happensotherwise the pinned soliton has no chance to be stable. Note

at that, once we choosB>0 andI',>0, the zero solution
may be unstable, according to the results presented above.

ry (I  =o-I In the conservative limity=1";=0, the pinned NLS soli-
7: v max= 1+cosl,’ 32 tonis given by a commonly known solution,

This branch corresponds tc_) the node-type solution t_hat ap- u= 7 seclf 77(|x|+a)]exp(l—r;2t), (34)

pears at the saddle-node bifurcation point, therefore it has a 2

chance to be stable. However, it may be unstable against

perturbations that are not taken into regard by this elemen- 1 n+T,

tary consideratior{for instance, the possibility of a shift of a= Z] 7—T5) (35

the soliton’s center from the point=0 was not taken into

regard. The actual situation with the stability of pinned soli- \here , is an intrinsic parameter of the solution family. Note
tons in the model including the loss and gain is rather oMy o+ a5 we assumi,>0, Eq.(35) yieldsa>0, hence ex-

pllcateﬁl, see tr}? follol\évmghsec.non.. is diff h pression(34) has a single maximum at=0.
In the casel’,>w/2, the situation is different, as the If now y andT’, are introduced as small parameters, the

_saddle-node b?furcatio_n is imaginary "? this case, CJCCurringbnergy—balance condition for this solution can be easily cast
in the unphysical regio)<I'y, see Fig. ). The only i, e orm n=—15,+2%/T";. In view of relation(35), the

physical branch of the solutions appears at the pbipty  5.y,5| solution exists in the regiop>T'5, or, eventually, in
=1/sinl’,, where it crosses the zero solution, lending it un—,[,qe interval

stable, which the branch presumably had in the unphysica
region. The stability-exchange principle that was already 0<I,<yIT (36)
mentioned above suggests that, from the viewpoint of the ! 2
present analysis, this branch becomes stable when it crosses

intr(]) thg phﬁsical rfadgioncf>ll;2. Hl?we\r/]er, ;S WeI/IZashthe mines the instability threshold for the zero solution, and tak-
other branch considered above Tor the case<#/2, the ing into regard thatD=1, we conclude that the pinned-

present one may be subject to instabilities of other typesygjiton singled out by the balance condition disappears

This branch ceases to be a physical one at pGRx . rosses into the unphysical region, cf. Figa)l, with the

At thg border between the two generic cases conS|dereI crease of the stress parametey/y, exactly at the point
abov?, |.e.,ha1F2=_ ”/E’ t/hze saddllzg-node Iblfur:patlon ocrc1urs where the zero solution loses its stability. According to the
SxaCtg{l.""t t. € poflnt?l—w ’ seel '9. 012 n this casc:],t € above-mentioned stability-exchange principle, this implies
estabilization of the zero solution happens at the samg 4 the zero solution inherits its instability from the soliton,

point. hence the soliton solution, given by Eq84) and (35), is
The situation is different in the ca$g =0 [see Fig. 1)l yefinitely unstablein all the region of its existence.

when the hot spot has no refractive-index-perturbation €OM- his conclusion demonstrates that the above results for

ponent, and Eq(31) takes the form the pinned solitons in the BG model are nontrivial, as they
give the pinned gap soliton a chance to be stable, which is
0 I 33 not possible at all in the simpler NLS model. Actual stability
2 sirk(6/2) Ty B3 ofthe pinned gap solitons will be studied below by means of
direct simulations.

In this case, as it was stressed above, the zero solution is

never destabilized, in accordance with which the solution Ill. NUMERICAL RESULTS FOR PINNED SOLITONS
branches do not cross the a¥ls-0 in Fig. 1(d). The lower
branch, which asymptotically approaches the0 axis,
must be unstabléhis is a generic feature in the case when For the simulations, we have to adopt a numerical form of
the amplitude of the solution decreases with the increase dhe § function in Egs.(1), (2), (5), and(6). We use the same
the stress paramet¢t9]), hence the upper branch may be numerical scheme as in the recent w¢ild]. The scheme
stable within the framework of the present analysis. How-discretizes the coordinatg by 501 grid pointsx;, j=

Comparing this result with expressidi20) that deter-

A. The approximation for the & function
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FIG. 2. Typical results illustrating the stability and instability of
pinned solitons in the caseg=1';=0, andI',=0.4. Each panel
shows the evolution ofu(x,t)|, starting with the exact pinned-
soliton configuratior(the evolution oflv (x,t)| is quite similay. (a)
0;n= 0.4 is smaller tharfg,y,: the soliton decays into radiatioth)
0,,=0.87> O4,;,: the initial soliton transforms itself into a stable
one, shedding off excess energy in the form of radiati@h.6;,

=0.57~ 64, Direct appearance of the stable soliton.
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E(Xn—(ml))

acod WD o1 Nl
Cco WW or n=1,... N+

0 elsewhere.

(37

The normalization factoA is defined so as to maintain the
canonical normalization of thes function, [*<8(x)dx
=3,5(x;)Ax=1, which yields

2N+1
n—(N+1)
AX nZ]_ CO{ZN"‘].W)

-1

A= , (39

Ax being the spacing of the grigh fact, Ax=0.04). In most
cases presented below, we ude=2 {then Eq.(38) with
Ax=0.04 yieldsA=[(1+ \/E)Ax]‘1%7.726, which makes
the & function quite narrow indeed.

B. Stability of the pinned solitons in the conservative model

Since exact stationary solutions to E¢f). and(6) for the
pinned soliton are available in the case=1';=0, in the
form of Eq.(23) supplemented by E@24), numerical test of
their stability is straightforward. We simulated the stability
by means of the split-step method applied to Efjsand(2),
employing the fast Fourier transform. The exact solut2®)
was taken as the initial configuration, and the corresponding
value 6;, of 6 was varied. The value&,<|T',|, at which the
exact solution does not exigtee Eq(26)] were probed too.

In this case, Eq(24) yields an imaginary value &, and the
initial configuration was taken in the form of ER3) with
the imaginarya. Even though the latter configuration is not a
stationary solution, it is still nonsingular and localized, so it
can be used to launch the PDE simulation.

As expected from what was mentioned above, in the case
I',<0 all the pinned states of the solitons are found to be
unstable. Solitons are pushed away from the pria0, in
accord with the expectation that the inhomogeneity is repul-
sive. It was also observed that, H3,| increases, at’,<
—0.7 a small soliton is left behind around the poiit 0
after the main pulse has separated from it; however, the re-
sidual soliton is also unstable and gradually decays into ra-
diation.

For positivel',, typical results regarding the stability of
the pinned solitons are displayed in Fig. 2. A conclusion is
that there is &ingle valued+~ 7/2 of the soliton parameter
0, such that ifd;,< 64, the soliton decays into radiation, as
is seen in Fig. @). Solitons with#,,> 6,,relax into a stable
one with 6= 64, See Fig. B). Finally, a soliton withé,,
= f4ap directly gives rise to the stable soliton, see Fi¢r)2

The examples shown in Fig. 2 pertain k=0.4, and
similar results were obtained for other valueslof Avail-
able computational power imposes a limitation on accuracy

—250,...71,0+1,... +250. As an approximation to the with which 6., can be identified. However, it was found
é function, we assume the following function is defined on athat, for I';=0.1, the decrease of the soliton’s amplitude,
set of 2N+ 1 grid points in the central part of the integration which is defined agu(x=0)|, is less than 1% after the

domain, located symmetrically around zero,

evolution timeT=200m, if 6, is taken from the interval

026608-7
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o ! : : true stationary solutions, this configuration decays into radia-
sk i tion immediately.

These results, obtained for the conservative model with
the local inhomogeneity of the refractive index, are very
o7h Relaxation to siable sofftons . similar to those reported in Reff14] for the stability of the
solitons pinned by an attractive inhomogeneity in the form of
a local suppression of the Bragg grating. A noticeable com-

08 i

06 b

05 - mon feature of the results is the existence ofgimgle (up to

ol | the numerical accuracy availabbalue 0~ /2 of the pa-

' Decay into radiation rameterd, which the established soliton may assume. In both
oaf . conservative modelghose considered here and in Réf4]),

0, relaxes tofgqp, if 6in> 05, @nd the soliton decays into
— radiation if 9i9< Ostay 1-€., the :s_oliton withd= 0o, may bg
o1f (no solution) 1 called asemiattractor In fact, it strongly resemblesemi-
\ , . stablesolitons, which are stable against small perturbations
0 05 r, 1 15 in the linear approximation, but may be unstable if terms
quadratic in the perturbations are taken into account. Semi-
FIG. 3. Asummary of results obtained for the stability of pinned Sstable solitons were recently studied in another context, as
solitons, plotted in thel{,,6;,) plane, in the conservative model the so-called embedded solitons, see R&] and references
with y=T";=0. In the upper region, whem> 6, initial solitons  therein.
evolve into the stable one, shedding off extra energy. In the lower The fact that all the solitons Withy,> Ogtan, Wherebg,,is
region, wheref< fg,, solitons completely decay into radiation. slightly larger thanm/2, relax to the valu&= 6, may be
Beneath the lower solid line, which borders the region whE  related to a known property of the ordinary solitons in the
<0<, see Eq(26), stationary solutions for the pinned solitons do unperturbed BG modely=1",=I",=0): they are unstable
nc_)t exis_t. AC(_:ordineg, an initial pulse_taken as a formal “soli_ton,” if 6> H(C(r))~l.01l(7-r/2) [11]. Thus, at least in the case when
mt:];;'i;tg?g'g:ggog?f Eq24) substituted fom (see the tejt is I', is small, it is natural to expect that any pinned soliton
y yed. with > /2 will relax, as a result of the instability, to a

. . value close tod{?). What is less obvious, is the decay of the
(0.497 < 0"‘<0'527T).’ hence, in any cas@gI',=0.1) be- solitons with << g, and the fact thab,, so weakly de-
longs to the same interval. For a much larger value of the

perturbation parametel;,=1.1, the corresponding interval pends onl’; (see Fig. 3.
is 0.517< 6,,<0.55, hencefg{I'»,=1.1) belongs to this
region. Generallyfq,, slightly increases with’».

Figure 3 summarizes these results in the form of a plot in
the (I',, 6;,) plane, which shows the regions where the initial  In direct simulations of the full model, which includes the
soliton relaxes to the stable one or decays into radiation. Ifoss and local gain, the exact soluti@28) of the conserva-
the regiond;,<|T',|, where the initial configurations are not tive version was again used as the starting point. The evolu-

02F -

C. The pinned soliton in the lossy medium
with the localized gain

amplitude (a.u.)
2

181
FIG. 4. Evolution of the amplitude of the

pinned soliton in the full model with loss and
gain, in the case with’,=0.5, y=0.0316, and
0,,=0.57. If I';=0.04208, the gain is insuffi-

A cient to balance the loss, and the soliton decays.
1.2} , i WhenT';=0.042 09, the soliton initially grows,
T,=0.04213 iadasl ' { and its intrinsic vibrations develop. Wheh;

: ' : ] takes a slightly larger value, 0.042 15, the initial
growth of the amplitude is steeper, which again
4 results in the establishment of regular intrinsic
vibrations(in this case, the oscillations are very
T',=0.04208 . similar to those supported by';=0.04209).

1.6

1.4p

When I'; is essentially larger, for instancé);
0.4 I,=05 1=0.0316 8, =0.5% - =0.057, interval vibrations of the pinned soliton
become chaoti¢the latter case shown by the dot-
0.2f - ted line.
00 100x 200 300x 400n 5001 600 700n

1
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15 ' ' ' - ' ' ' then it temporarily settles dowat the value 1.47 in Fig.)4
I 00216 T,-0.04200 I,-05 0,05 and, eventually, regular oscillations set in. A long simulation,
] up tot=600m (see Fig. 4 shows that the intrinsic vibrations
of the soliton are completely stable. The waveforns,t)|
1 and [v(x,t)|, obtained at the end of the simulation fbg
=0.04209, are shown in Fig(&.
When the gaid’; is further increased, the initial growth
of the soliton’s amplitude is sharper; however, it is found that
it again temporarily settles down to a nearly constant value
close to the same level of 1.47 as above, which is followed
by the onset of persistent oscillations. WHenis still larger,
| the eventual oscillatory state becomes chaotic with large
] fluctuations. The corresponding wave forms|afx)| and
1 lv(x)| at the end of the simulationt£300m) for Ty
e =0.057 are shown in Fig.(B). It can be seen that conspicu-
LTI e : > S s = ous radiation tails are attached to the soliton, which implies a
(b X permanent energy leakage from it. This extra loss adds up to
FIG. 5. The profiles of|u(x,t)| (solid lines and [v(x,1)] the direct dissipative loss, both being compensated by the

(dashed linesat the end of the simulatiofharrow peaks placed at Iocal,'zed gan. ,Ifrl is too large, the radiation wave field
x=0 mark the *hot spot). The values ofy, T',, and 6, are the outside the main pulse grows to such an extent that the re-
. ) 1 n

same as in Fig. 4a) T';=0.042 09 is barely enough to support the Sulting wave form cannot be regarded as a localized one. In
soliton against the loss. In this case, the soliton emits radiation at §Ct, in this case it is observed that the main pulse separates
low rate. (b) I';=0.057. The soliton emits radiation at a high rate. from the pointx=0, drifts away, _and dle$ down due to the
loss. However, the strong localized gain generates a new
tion of the solution was simulated at a fixed value of the loss'soliton” around x=0, which later drifts away again, this
parametery. The local gainl’; was varied in order to deter- Process repeats itself quasiperiodically.
mine its valugs) at which the soliton settles down to a stable An important feature of these results is that a staelen
pinned soliton. though it is vibrating soliton is possible not at a single value
Figure 4 shows the evolution of the soliton’s amplitude, Of the gain, that exactly compensates the loss, but in a finite
defined aslu(x=0)|, vst, when the localized gaif'; is interval of values of the gain. The energy balance is main-

1F

051

1]

(a)

14
lul, Iv]
12
1k
08
08
04
02

varied. The other parameters are fixed, so that tained, in this case, through permanent emission of radiation
by the soliton, which compensates the excessive gain. It is
,=0.5, y=0.0316, 6;,=0.5. (39 relevant to mention that a very similar mechanism, which

gives rise to stablenonequilibrium solitonsin an over-
For a small value of"; (I';=0.04208 in Fig. 4 which is  pumped system of a different tyfthat, however, also origi-
insufficient to balance the loss, the soliton decays. For aates in nonlinear optics—the so-called split-step mipdel
slightly largerI’;=0.042 09, the soliton’s amplitude grows, was recently considered in detail in R¢22]. In that case

20 T T T

r1=o.64209
10 I -
o | - 1 P — 1 .
-4 -3 -2 -1 0 1 2 3 4
50 T T T T T T T
®) I',=0.05633
0, 3 é = 1' 4 (') L1' = é 3 7 FIG. 6. The frequency spectrum of the time-
40 - - - : . . : dependent amplitudéu(x=04)| of the pinned
© [;=0.05634 soliton at different values of the local galny,
201 T after persistent vibrations set it(a) T,
. RV W v Y ~0.04209,(b) T';=0.056 33,(c) T;=0.056 34,
ot —? —$ —1| (.) 1| ? ? 4 (d) I'y=0.5636, ande) I';=0.056 90. In all the
(d) F1=0.05636 Ca5e5,7:0.0316,F2:O.5, and@in=0.5rn'.
0 I} LA 1 Al 1
-4 -3 -2 -1 0 1 2 3 4
40 T T T T T T T
(e I',=0.05690
il u J\A‘l‘u‘ |
0 codad A A Ao s Ak,
-4 -3 -2 -1 0 1 2 3 4
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amplitude (a.u.)
2

1.8 —

1.6

I',=0.0131

141

9,,=0.9% FIG. 7. The soliton's amplitudi(x=0;)| vs

- t for three different values of the initial amplitude

r,=001333 : 0,,. In each case, the value of the gdih is

L o S R i chosen as the minimum one, which can support
: : the establishment of a soliton. Other parameters

are fixed:I',=0.5 andy=0.01.

1.2

041 .

0.2 1 1 1 1 1
0 100 200 300x 400% 500n 6007

t

too, the stability of the soliton is provided by the emission ofous, which is characteristic for well-developed dynamical
radiation that balances the excess gain. chaos.

A further insight in sustained intrinsic vibrations of the  Another way to describe basic properties of the pinned
pinned soliton, and the transition from the regular oscilla-solitons in the full model is to identify, for various initial
tions to dynamical chaos, is provided by consideration of the/alues ofé;,, a minimum value [';) i, of the gain which is
spectrum of the functiofu(x=0{)|. In the established 0s- necessary to overcome the loss. Figure 7 shows the evolution
cillatory regime, the spectrum was computed at several difyf the soliton’s amplitudes as a function of time fer,
ferent values ofl";, while the other parameters were kept =0.27, 0.57, and 0.9r, the corresponding minimum val-

constant as per E¢39). Figure &a) shows the spectrum for ues being [';),;;=0.0239, 0.0133, and 0.0131, while the
I'1=0.042 09, which is the value barely enough to compen- ;

sate the loss. It can be seen that the established osc'llat'oOther parameters are fixegt=0.01 andl’,=0.5 [note that
LY . . ! Walloy these values ob,, exceedl',, hence the corresponding
are quasiharmonic, with a single well-pronounced frequenc

2.9 (in arbitrary unit3, and an additional tiny spectral com- %xact solitons in the conservative model do exist, according

ponent at the frequency:2 (which is, apparently, incom- to Eq.(26)]. Thus, unlike the conservative model, in the full
mensurate with the main ope ’ ’ model, values of9;, essentially smaller tham/2 may give

Figure &b) shows the spectrum fdt,=0.5633, which is rise to a stable pinned splito(with intrinsic vibrations.
similar to that in Fig. 63). The main frequency shifts down However, the smaller the differendi,—T',, the larger value
to a value about 2.8, with two other visible componentsOf I'1 iS necessary, as, according to EGg9) and (25), the
found at the frequencies 0.8 and 1.4. Then, suddenly, at &@te at which the localized gain supplies energy to the soliton
slightly larger gain,I';=0.5634, many new conspicuous decreases-(6;,—I';) as 6;,—I',—0. On the other hand,
spectral components emerge, which is shown in Fig),6 analysis of the simulation results shows that the characteris-
and corresponds téapparently chaotic intrinsic vibrations tics of the established soliton do not depend on the initial
of the established soliton. The same behavior is observed &glue of 6;,, which excited it, but solely on the values of
I';=0.5635. AtI';=0.5636, the picture suffers another andI'y,, i.e., the established soliton is a genuat&actor.
abrupt changdsee Fig. &)]: the power spectrum reverts  Then, effects caused by varying the loss paramgteere
back to the simple three-frequency-component structurévestigated. Because of the necessity to satisfy the energy-
reminiscent of the situation at lowdr,, cf. Fig. 6b). A  balance conditionl’; needs to be changed to track the varia-
transition from a chaotic behaviofpresumably accounted tion of y. For each value of, we tried to find the minimum
for by a strange attractor, to a simple quasiharmonic behavigsize of I'; that supports a stable soliton. Results of these
is known in the theory of dynamical systems, where it isnumerical experiments, obtained for fixég=0.5 and 6;,
called a “boundary crisis” of the chaotic attract(®1]. =m/2, and a set of valuesy=0.000316, 0.001,

The picture revealed by the simulations changes the thir.003 16, 0.01, 0.0316, ariil, are displayed in Fig. 8.
time at I';=0.5640, with reappearance of a many-The respective minimum-gain values were found to be
component chaoticlike spectrum, similar to that in Fige)6  (I'1)min = 0.000422, 0.00140, 0.00422, 0.0133, 0.042 009,
The chaotic behavior continues to higher valued'of Fig-  and 0.1327. It is interesting to note that, except for the sec-
ure ge) shows the spectrum df;=0.05690, where its ond case, when the ratid’() i,/ is 1.40, in all the other
structure is not simply a multicomponent one, but continu-ones the ratio takes values between 1.32 and 1.34.
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amplitude (a.u.)

17 T T T T T T
ol I,=05 6, =05x |
R ¥=0.1
15k 1=0.0316 i
FIG. 8. The amplitude of the solitorju(x
145 7 =0.)|, vst for different values of the loss pa-
- rametery. Each time the value of the galny, is
L chosen as the smallest one, which leads to the
7 establishment of the soliton. Other parameters are
000316 fixed: I',=0.5 and6;,=0.5s.
i 2 35""“"2 i
™ =0.001
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300 400r 500 6007 700
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It is clearly seen from Fig. 8 that the amplitude of the be related toy andI'; as per Eq(31).

established soliton monotonically increases with the growth It was checked that the quasistationary solitons, in those
of ¥ (which is accompanied by the growth of the minimum- cases when they were found, are indeed close to wave form
gain necessary to support the soljtoht is also seen that it (23). The corresponding values of were identified by
was never possible to produce a truly stationary soliton, bufneans of the least-squared-error fit to expresgk3h Then,

in some casesy(=0.000316, 0.00316, 0.01, and 0.1) it for thus found values ob and given values o, the equi-
was possible to generate nearly stationary solitons with §orium values of the gai’; were calculated as predicted by
small amplitude of intrinsic vibrations. In other cases ( the analytical formuld31). The results of these are presented

=0.001 and 0.0316), varying, by steps as small as it was " Table I. _ . .

admitted by the nu)mericZ\InEéheyme l?t wast possible to A noticeable fact obvious from Table | is that, in all the
adjust the gain so that to suppress the internal vibrations, i. (_:,ases,dtht(:] numelrltc_:alll)ll foundd_ ?q(;“l'br"f)m ;/?Iuig/f thBe gain
the established soliton remained a breather, rather than an?z(cee S (he analylically predicted one by 9 1o 0. because
thing close to a fixed-point state. n all the cases, as it was stressed above, the established

In all the cases presented in Fig. .andI"; are small solitons are not completely stationary, a natural conjecture is
. y 1

enough to treat them as perturbations. Then, if the estaﬁhat the slightly V|br_at|ng soliton continuously emits energy
ata low rate, and this extra energy loss makes it necessary to

lished soliton assumes a nearly stationary form, it is naturah th . hat | than that which i
to expect that it must be close to soluti@8) found in the ave the gain somewnat larger than that which compensates
the direct dissipative loss as per E§l).

nservative model, with some value @f and thisé m . N
conservative model, with some value 6f and this¢ must As concerns the comparison of the full model with its

TABLE I. Values of the loss parameterat which quasistation- conservative counterpart, we .reca" that, in the Conservgtive
ary stable pinned solitons were found by the adjustment of the gaiﬁnOdel’ the ste}ble pinned So_llton always assumes a single
I'; (see Fig. 8 while the refractive-index perturbation is fixed, value of ¢ for g'Ve,nF2 _(and this value very Weak!y depends
I',=0.5. The corresponding values of the gaifi;X..m, are also NIz, always being slightly larger tham/2, see Fig. 8 On
included, together with the values of the soliton paramétehich ~ the contrary to this, in the full model the quasistationary
provide for the best fit of the quasistationary solitons to analyticalSoliton may be stable in a range of the valuesfpfas it is
solution (23). The values [';) .y are those predicted, for givep  evident from Table I.
and 6, by energy-balance equatidB1), which does not take the Finally, it has also been checked whether stable pinned
radiation loss into account. solitons can be found when the “hot point” does not perturb
the refractive index, i.e.J',=0. As a result, it has been
concluded that any finite positive, (the smallest value tried

(Fl)numf (F 1) anal

was I',=0.01) may support a stable soliton in the pinned
4 0 Toum  a)ana (1 w)ena state, but iflf,=0, the pulse set at=0 finally drifts away,
0.000316 0.7  0.000422 0.000386 0.0944 and then decays due to the loss. An explanation to this find-
0.00316 0.59%  0.0042 0.00369 0.1373 ing may be that all the solitons found in the model with loss
0.01 0.608r 0.01333  0.01165 0.1442 and gain emit some radiation, see above, and asymmetric
0.1 0.826r  0.1327 0.121 0.0967 fluctuations in the emission rate create a weak random force

that drives the soliton away.
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FIG. 10. Stable soliton captured between the repulsive points
FIG. 9. The interaction of a soliton with a pair of repulsive (I',=—0.5) with the separatioh=3.84 between them, in the con-

points (",=—0.7), with a relatively small separation between servative model. Shown is the evolution of the figldx,t)|. The
them,L=1.84, in the conservative modeh) The initial configu- initial value of the soliton parameter &,=0.7x7.
ration, with 6;,= w/2. (b) The result of the interaction: splitting of
the soliton into two pulses, which is accompanied by a spontaneougie pinned state of the soliton is unstable, the dynamical
symmetry breaking. The solid lines shguj, and the dashed lines evolution does not trivially reduce to pushing the soliton
show [v]. Note that, in the initial configuratioriu| and [v| are  aside; instead, a generic outcomesjpditting of the soliton in
indiscernible. two, which is accompanied by a spontaneous symmetry
breaking(in some cases, for instancedf,= 0.7, the other
parameters being the same as in Fig. 9, the instability devel-

The soliton may be stably pinned not only by an attractive®PS SO Slowly that it was not possible to identify the out-
inhomogeneity, but also between two separated repulsive®m®: _ o _
ones(in the present context, each one will represent a locally With the increase of, stabilization of the soliton trapped
suppressed refractive index, correspondingte<0). The between the repulsive inhomogeneities becomes possible.
consideration of this configuration is interesting by itself, andT"€ trapped states seem most stable around the \alue
it also may be used to design a soliton-based optical oscilla=3-84, see an example in Fig. 10. In this case, systematic
tor, in which the eigenfrequency is easily controlled by theSimulations reveal a feature that strongly resembles that re-
choice of the separation between the two repulsive points. IRO"ed above for the single attractive inhomogeneity in the
particular, in the framework of the perturbation thegfgr ~ conservative model: an established trapped state is stable for

small|T,|), the soliton may be regarded as a quasiparticle i Single(up to the accuracy of numerical simulationglue
the external potential of 6, which is very close tor/2; if 6;,>m/2, the soliton

sheds off some radiation and eventually relaxes to the said
single value ofg (see Fig. 1 while if 6;,</2, the soliton
gradually decays into radiation. Thus, the single valuedness
of the stable soliton in the conservative model appears to be
, . , a generic property. For still larger values bf the pinned
where the potentialV,(¢) is given by Eq.(27) (with T'z  gtate is less robust; in particular, a soliton with> /2 may

<0), andL is the separation between the two defects. split, instead of relaxing to the stable one witk /2.
We simulated the dynamics of this configuration in some

detail, but only for the conservative cages I'1=0. First, if

L is smaller than the proper size of the soliton, it sees the pair
of the inhomogeneities, in the first approximation, as a single
repulsive center, hence stable bound states are not possible.Once the existence of stable pinned soliton has been es-

D. Soliton pinned between two repulsive inhomogeneities

+W; , (40

1L+
> 3

1
Wz(f)zwl(EL_f

IV. COLLISION OF AMOVING SOLITON WITH THE
LOCALIZED GAIN

Within the framework of the perturbation theory, E440)
and(27) make it possible to predict a critical valuA §), at

which a stable equilibrium appears for the first timexat

tablished, the next natural step is to consider a possibility of
capturing a free moving soliton by the “hot spot.” To this
end, the soliton was first generated far from the spot by

=0. The corresponding expression is cumbersome, but imeans of the Newton-Raphson method, as a stationary solu-

easy to verify that A ¢)., monotonically decreases, with

varying from 0 tow/2, from (A§),=c to the minimum

value Aé),=In(y2+1)~0.88.

Direct simulations at finitd", demonstrat§see an ex-

ample in Fig. 9 that, in the case of relatively smdll when

tion in the reference frame moving at some velodiya
range of the velocities €c<0.7 was thus investigated.
Then, the collision was considered, running direct simula-
tions of Egs.(1) and (2).

First, the collision experiment was performed in the con-
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FIG. 11. Collision of a moving soliton, with fixed valugs=0.77 andc=0.4, and the inhomogeneity in the conservative mdthed
inhomogeneity is shown by a narrow peak which, for an unessential reason, is shifted from the=p@)ntThe lower and upper panels
show, respectively, the evolution of the figla(x,t)| in terms of the contour plots, and the wave forfuéx)| and|v(x)| (solid and dashed
lineg) at the end of the simulatiofmote that thes andv components are asymmetric in the moving solijo(e The soliton passes through
a weak defect witH",=0.2. (b) A stronger defect, witH",=0.5, captures a part of the energy of the passing soliton, to form a small-
amplitude pinned one. Another small part of the energy bounces back in the form of radigtiéthe defect is still strongel,,=0.9, the
shares of the trapped and bounced energy are larger.

servative model, withT';=y=0. The parameter plane summarizes these results, showing a border in thé'
(c,I';) was explored withc taking values 0.1,0,2..,0.7,  plane between the passage and partial-capture regions.
andI', taking values 0.1,0,2..,0.9, while 6,, was kept Next, we consider the collisions in the full model, with
constant at 0.7. v=0.01 andl’'; =0.015. Results reported in the preceding
If the inhomogeneity is weak, the moving soliton passessection show that a stable pinned soliton exists at these val-
through it, see an example in Fig.(&L When the inhomo- ues of the loss and gaiithe collisions were simulated only
geneity strength is largel;,=0.5, a part of the soliton still for small values ofy, as otherwise the soliton will be
passes through it, but another part of the soliton’s energy istrongly attenuated still before the collisjorThe initial
captured by the local defect to form a pinned soliton, anvalue of the soliton’s parameter was agdip=0.7.
example of which is shown in Fig. ). Some radiation The results obtained for the full model are not very dif-
bouncing in the backward direction can also be observederent from those for the conservative one. When the §ain
whenT'; is large, or when the incident soliton is fast. Natu- is small, the soliton passes through, anfl fis larger, a part
rally, more energy is trapped by the defectli§ is larger  of the energy is trapped to form a pinned soliton. A differ-
[Fig. 11(c)], and less energy is trapped if the soliton is fasterence from the conservative model is that the valud pfat
However, the valud',~0.5, at which the trapping begins, which the inhomogeneity starts to capture a part of the soli-
only weakly depends on the soliton’s velocity Figure 12 ton’s energy in the conservative model is approximately in-

026608-13



MAK, MALOMED, AND CHU PHYSICAL REVIEW E 67, 026608 (2003

09 T T T T T T 0.9
6=0.7n

c=0.1 1=0 T,=0

08 1 08} 4

07k Solitons are partially trapped

07 1

06 q

2 y=0 I;=0 i Solitons are partially trapped
05 == I
P 05|
0.4 P 4
L e i 04}
0.3 e
ot 03
02r L7 v=0.01 1"1=0,015 A
s 7 Solitons pass through
o1t 7 4 02 Solitons pass through
o 1 . 1 1 1 . 01 I I I I
0.1 02 03 04 05 08 07 0.1 0.2 03 04 0.5 0.6 0.7 08 0.9
c 2]
FIG. 12. Borders in the parametric plane,I(,) between re- FIG. 13. Regions in the parametric plangI(,) of the conser-

gions in which the moving soliton with fixed=0.77 passes the vative model in which the moving soliton with fixeo=0.1 passes
defect or gets partially trapped. The solid line is the border in thethe defect or gets partially trapped.
conservative model, withy=T";=0. The dashed line is the border
in the full model withy=0.01 andl’;=0.015. gain and attractive inhomogeneity of the refractive index; the
spot can be created by means of doping a short segment of
dependent of its velocityl',~0.5 if ¢>0.1, while in the the fiber. In the absence of the loss and gain, a family of
lossy model, this value df, increases wittt, as is seen in  exact solutions for pinned solitons was found. In the full
Fig. 12. model including loss and gain, the instability threshold for
Another representative set of numerical data can be dighe zero solution was found; it was concluded that the insta-
played for a fixed value of the soliton’s velocitg=0.1, bility is not possible without the presence of the imaginary
while the paramete#,, of the incident soliton takes values part of the local gain, i.e., a localized perturbation of the
0.17,0.27, ...,0.97, andI',=0.1,0.2...,0.9. These re- refractive index. Further, for small values of the loss and
sults are presented here only for the conservative model. gain, it was predicted what soliton is selected by the energy-
Simulations show that, if the moving soliton is heavy balance condition. Parallel to this, it was shown that, in the
(large 6;,) or the inhomogeneity is weak, the soliton passessimpler model based on the NLS equation, the pinned soliton
it. Heavier solitons can pass through a stronger defect. If thean never be stable in the presence of the loss and local gain.
inhomogeneity is strongI{, is large, the soliton gets In direct simulations, we have found that a single pinned
trapped, which is always accompanied by emission of radiasoliton is stable in the conservative fiber-grating model. It is
tion in both the forward and backward directions, and thea semiattractor: solitons with a larger energy relax to it via
radiation can further self-trap into secondary solitons. Atemission of radiation, while those with smaller energy com-
smallT’,, little energy is scattered away in either direction. If pletely decay into radiation. The same conclusion is obtained
', is larger, more energy is scattered forward, and whgn for solitons trapped between two repulsive inhomogeneities.
is still larger (C,~0.9), more energy is scattered backwards,In the full model with the loss and gain, all the stable pinned
cf. Fig. 11(c). Figure 13 summarizes the results obtained forpulses demonstrate persistent internal vibrations and emis-
the interaction of the moving soliton and the localized attrac-sion of radiation. Sometimes, they are almost stationary soli-
tive defect in the conservative model for the fixed velocity,tons, and in these cases the prediction based on the energy-
c=0.1. balance underestimates the necessary gain by 9% to 14%,
It is natural to compare the results obtained for the conwhich is explained by the extra radiation loss. If the loss and
servative model with those reported in REf4] for the in-  gain increase, the intrinsic vibrations become chaotic.
teraction of the moving gap soliton with an attractive inho-  Collisions of free moving solitons with the *hot spot”
mogeneity in the form of a local suppression of the Braggwere simulated too. The passage and capture regimes were
grating. In that case, when the soliton was heéayge 6), identified for the solitons in the conservative and full models;
the interaction effectively reverted from attraction to repul-the capture is only partial, which actually implies splitting of
sion, so that the incident soliton could bounce back. In théhe soliton. It was also found that, if a large part of the
present model, this unusual behavior has never been olsoliton’s energy is radiated away, it may self-trap into sec-
served. ondary solitons.
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