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Interaction of a soliton with a localized gain in a fiber Bragg grating
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A model of a lossy nonlinear fiber grating with a ‘‘hot spot,’’ which combines a local gain and an attractive
perturbation of the refractive index, is introduced. A family of exact solutions for pinned solitons is found in
the absence of loss and gain. In the presence of the loss and localized gain, an instability threshold of the zero
solution is found. If the loss and gain are small, it is predicted what soliton is selected by the energy-balance
condition. Direct simulations demonstrate that only one pinned soliton is stable in the conservative model, and
it is a semiattractor: solitons with a larger energy relax to it via emission of radiation, while those with a
smaller energy decay. The same is found for solitons trapped by a pair of repulsive inhomogeneities. In the
model with the loss and gain, stable pinned pulses demonstrate persistent internal vibrations and emission of
radiation. If these solitons are nearly stationary, the prediction based on the energy balance underestimates the
necessary gain by 10–15%~due to radiation loss!. If the loss and gain are larger, the intrinsic vibrations of the
pinned soliton become chaotic. The local gain alone, without the attractive perturbation of the local refractive
index, cannot maintain a stable pinned soliton. For collisions of moving solitons with the ‘‘hot spot,’’ passage
and capture regimes are identified, the capture actually implying splitting of the soliton.
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I. INTRODUCTION

Solitons in any physical medium are subject to attenua
due to dissipation, hence it is necessary to apply gain
can support the solitons. A possibility that may find intere
ing physical applications is to create a localized gain, wh
will be a trap for solitons in a lossy medium. In terms
optical solitons, this can be easily realized for spatial solito
in a planar waveguide, where the gain may be applied
narrow strip. However, for spatial solitons gain is a redu
dancy, as they are supported simply by the energy
through the soliton itself. Besides that, in this work it will b
shown that, in the simplest case when the spatial solitons
governed by the nonlinear Schro¨dinger ~NLS! equation, a
pinned soliton supported by the localized gain can neve
stable. On the other hand, realization of the local-gain t
for usual temporal solitons is impossible, as such soliton r
~for instance, in an optical fiber@1#! with the group velocity
of light.

An unique possibility to create a gain-induced trap in
lossy medium is offered by a fiber grating, i.e., a Bragg gr
ing ~BG! written on an optical fiber. Fiber gratings are
basis for many photonic devices@2#. A challenging possibil-
ity is to use fiber gratings for the creation of pulses of sl
light, which is a topic of great current interest@3#. The pos-
sibility of the existence of slow pulses suggests to try a loc
gain-induced trap for solitons.

In fiber gratings, solitons exist due to the interplay b
tween the Bragg reflection and Kerr nonlinearity of the B
carrying fiber@4#. These solitons were predicted analytica
@5,6#, and then they were created in the experiment@7#. Ex-
cept for the case in which the BG soliton is very broad@8#,
this species of optical solitons is distinct from the usual N
solitons@1# in ordinary nonlinear optical fibers.

As it was mentioned above, search for very slow solito
1063-651X/2003/67~2!/026608~15!/$20.00 67 0266
n
at
-
h

s
a
-
x

re

e
p
s

t-

l-

-
-

s

in fiber gratings, which were predicted long ago@6#, is an
issue of great interest@9#. The standard mathematical mod
of the nonlinear fiber grating predicts a whole family of zer
velocity solitons@4–6#, a part of which is stable@10,11#. If
realized experimentally, such a soliton would represen
pulse of standing light, with its left- and right-traveling com
ponents being in a permanent dynamical equilibrium.

The BG solitons which have been observed in the exp
ment up to date are moving ones, their velocity being.75%
of the maximum group velocity of light in the fiber@7#. The
quest for zero-velocity solitons may be facilitated by mea
of a local defect in the BG that exerts an attractive force
a soliton, having thus a potential to be a soliton trap~note
that a local defect may trap light in the fiber grating via t
four-wave mixing without formation of a soliton@12#!. Be-
sides its profound physical importance@13#, such a soliton
trap is also promising for the fiber-sensing technology@14#.

The interaction of the soliton with an attractive defect
the form of a local suppression of BG was studied recently
Refs. @13# and @14#. The latter work also considered a tra
combining the local BG suppression and a change in
refractive index~these two effects may come together as
manifestation of a local inhomogeneity in the BG-carryi
fiber!. As a result, it has been demonstrated that a gap so
may indeed be pinned by the local defect, and, moreove
narrow (d-functional! defect uniquely selects parameters
the stable trapped soliton@14# ~this feature is described in
more detail below!.

However, a trapped soliton will be destroyed by fiber lo
Indeed, taking into regard that the best fiber gratings~used as
dispersion compensators in optical telecommunications@15#!
have the attenuation rate.0.2 dB cm21 ~in hybrid grating
waveguides, using glass and a sol-gel material, the atte
tion may be lowered to 0.1 dB cm21 @16#!, it is easy to esti-
mate that a standing soliton will be destroyed during the ti
©2003 The American Physical Society08-1
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&5 ns. Therefore, it is necessary to support the trapped
ton by means of a locally applied optical gain, which is ta
tamount to the above-mentioned soliton trap induced by
cal gain. A related problem is a possibility to capture
moving soliton by the local gain. These issues are the m
subjects of the present work. Besides the fundamental in
est to having permanently maintained trapped optical s
tons, they may also be interesting for applications, such
optical memory.

The local gain can be provided, for instance, by a sh
resonantly doped segment in the BG-carrying fiber. In t
connection, we note that the moving BG soliton that w
observed for the first time in the fiber grating had the te
poral width.200 ps@7#. Taking into regard the Lorentzia
contraction~as it was mentioned above, the soliton was mo
ing at a velocity equal'75% of the maximum group veloc
ity!, the same soliton, if stopped, would have the spa
width on the order of a few centimeters. Thus, the loca
pumped segment of the fiber may be approximated byd
function~which we assume in the analytical model below! if,
roughly speaking, its size is.1 mm. Note that the maxi-
mum gain that can be provided by an Er-doped amplifie
.5 dB cm21 @17#. Comparing this to the above-mentione
minimum damping rate 0.1 dB cm21, we conclude that the
proposed scheme may be self-consistent.

Thus, the model to be formulated below assumes the lo
gain in the form of thed function ~in the numerical part of
the work, a smooth approximation to thed function is used!.
The model also includes an imaginary part of the localiz
gain, which actually accounts for a local perturbation of t
fiber’s refractive index~note that the dopant, if used to in
duce the local gain, may indeed affect the local refract
index!. The imaginary part is necessary, as it will be se
that pure gain cannot maintain a pinned soliton in a sta
state. As for the size of the refractive-index perturbationdn,
it will be seen thatdn*0.1 is definitely sufficient to stably
trap a soliton. In this respect, it is relevant to mention tha
dopant added to a silica fiber usually induces a refrac
index changedn;0.05, while in a polymer fiber it is;0.2.
The latter value can readily produce a stable pinned stat
the soliton, and the former one may be sufficient too.

A relatively large jump of the refractive index between t
doped segment and the rest of the fiber may induce an a
tional effect, viz., reflection of light, although the reflectio
may be smothered by a sufficiently smooth profile of dis
bution of the dopant. An additional term in the basic mod
@see Eqs.~1! and~2! below#, induced by the reflection, would
be the same which formally accounts for a local perturbat
of the BG reflectivity. The latter type of the conservati
perturbation was considered in Ref.@14#!, a conclusion being
that its effect is quite similar to that directly produced by t
refractive-index perturbation, which is directly included
Eqs.~1! and~2!. For this reason, we do not consider the loc
reflection as a separate perturbation in this work~in any case,
it can be easily added, if necessary!.

The paper is organized as follows. In Sec. II we formul
the model, and produce some analytical results. First of
we consider the stability of the zero solution against sm
perturbations in the presence of the uniform loss and lo
02660
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ized gain. An instability-onset threshold is found, and it
demonstrated that the instability does not take place un
the gain has an imaginary part. For the comparison’s sa
we also briefly consider an allied model problem, viz., t
instability induced by a ‘‘hot spot’’ in the lossy NLS equa
tion, which produces quite similar results. Then, we produ
a family of exact analytical solutions for solitons pinned
the local inhomogeneity of the refractive index, in the a
sence of loss and gain. Another analytical result pred
what particular pinned soliton is selected by the balance
the loss and gain, provided that they are small perturbatio
A soliton selected by the energy balance is also found in
lossy NLS equation with the hot spot~in that case, it is
always unstable!.

Section III reports results of direct simulations of pinn
solitons, in both the conservative version of the model, a
in the full one. A surprising result is that, in the conservati
model, asinglepinned soliton, out of their continuous fam
ily, is stable. If the initially created soliton has larger energ
it relaxes, via emission of radiation, to the stable one, an
the energy of the initial soliton is smaller than that of t
stable one, the pulse decays into radiation; the former ob
vation can be explained by known results for the stability
the ordinary solitons in the unperturbed BG model@10,11#. A
similar result is also obtained, in the framework of the co
servative model, at the end of Sec. III for a pair of repuls
defects: in the case when they can hold a soliton at the m
point between them, any pulse either relaxes to a uniqu
selected soliton, or decays~if the pair of repulsive inhomo-
geneities cannot hold a soliton, it splits the soliton into tw!.
It is relevant to mention that a nonlinear BG structure w
two local defects was very recently studied as a promis
model for all-optical switching@18#.

In the full model, all the pinned solitons demonstrate p
sistent intrinsic vibrations; depending on the ratio of the lo
and gain, and on the strength of the attractive refracti
index inhomogeneity, the amplitude of the vibrations may
small or large. In the former case, the pinned soliton may
regarded as an approximately stationary one, then the ab
mentioned analytical prediction of the soliton selected by
balance between the loss and gain gives an error betw
10% and 15%, which may be explained by extra radiat
loss.

In Sec. IV, collision of a moving soliton with the hot spo
is considered by means of direct simulations. As a res
regions of passage and capture are identified in the solit
parameter space in both the conservative and full models
fact, the capture is incomplete: a part of the soliton’s ene
gets trapped, giving rise to a pinned soliton, while the ot
part passes and rearranges itself into another soliton. If
inhomogeneity is strong, a conspicuous part of the ene
may bounce back.

II. THE MODEL AND ANALYTICAL RESULTS

A. The model equations

A localized gain inserted into a fiber grating is model
by ad-function term added to the standard BG model, wh
8-2
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INTERACTION OF A SOLITON WITH A LOCALIZED . . . PHYSICAL REVIEW E67, 026608 ~2003!
includes coupled equations for the amplitudes of the rig
and left-traveling electromagnetic waves,u(x,t) andv(x,t)
@4#. The full model is then

iut1 iux1v1~ uuu212uvu2!u52 igu1 iGd~x!u, ~1!

iv t2 ivx1u1~ uvu212uuu2!v52 igv1 iGd~x!v, ~2!

where the maximum group velocity of light is normalized
be 1, the nonlinear terms account for the self- and cro
phase-modulation induced by the Kerr effect, the linear c
plings represent the mutual conversion of the waves du
the resonant Bragg scattering~the conversion coefficient is
also normalized to be 1). On the right-hand side of Eqs.~1!
and~2!, the fiber loss parameterg is real and positive, while
the local-gain strengthG may be complex,

G[G11 iG2 , ~3!

its positive real part being the gain proper, while the ima
nary part accounts for a localized perturbation of the refr
tive index~note thatG2.0 corresponds to a local increase
the refractive index!.

A stationary solution that represents a soliton trapped
the ‘‘hot spot,’’ is sought for as

u~x,t !5U~x!exp~2 i t cosu!,
~4!

v~x,t !5V~x!exp~2 i t cosu!,

whereu is a parameter of the soliton family. The substituti
of Eq. ~4! into Eqs.~1! and ~2! leads to equations

F i
d

dx
1cosu1 ig2 iGd~x!1~ uUu212uVu2!GU1V50,

~5!

F2 i
d

dx
1cosu1 ig2 iGd~x!1~ uVu212uUu2!GV1U50.

~6!

B. Stability of the zero solution

We start the analysis with the linearized version of E
~1! and~2!, in order to analyze the stability of the zero sol
tion in the presence of the localized gain. An eigenmode
small perturbations is sought for as

u~x,t !5A1exp~2 ixt2kx!,
~7!

v~x,t !5B1exp~2 ixt2kx! at x.0,

u~x,t !5A2exp~2 ixt1kx!,
~8!

v~x,t !5B2exp~2 ixt1kx! at x,0,

where the frequencyx may be complex, its imaginary pa
being the instability growth rate, andk must have a positive
real part. Substituting this into the linearized equations yie

k5A12~x1 ig!2, ~9!
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where the square root is defined so that its real part is p
tive, andB652@(x1 ig)7 ik#A6 . Further, the integration
of the linearized equations in an infinitesimal vicinity ofx
50 yieldsA15A2 eG, B15B2 e2G.

Eliminating the amplitudesA6 andB6 by means of these
relations, we obtain an equation

x1 ig2 ik

x1 ig1 ik
5e22(G11 iG2), ~10!

where expression~3! was substituted forG. Finally, combin-
ing Eqs.~10! and~9!, we can find the eigenfrequency soug
for

x52 ig1sgn~sinG2!cosh~G11 iG2!, ~11!

where the sign multiplier in front of the second term pr
vides for the fulfillment of the above-mentioned conditio
Rek.0.

A straightforward consequence of Eq.~11! is an expres-
sion for the instability growth rate,

Im x52g1~sinhG1!usinG2u. ~12!

Thus, the localized gain gives rise to the instability of t
trivial solution, provided that it is strong enough:

sinhG1.sinh@~G1!cr#[
g

usinG2u
. ~13!

Note that the instability isimpossiblein the absence of the
local refractive-index perturbationG2. The instability-onset
condition ~13! simplifies in the limiting case when both th
loss and gain parameters are small~while G2 is not necessar-
ily small!:

G1.~G1!cr'
g

usinG2u
. ~14!

At last, we notice that the instability is oscillatory: as it fo
lows from Eq.~11!, RexÞ0, unless cosG250.

As the onset of instability in a system combining unifor
loss and local gain is a simple but new issue, for the co
parison’s sake it is relevant to briefly consider it in a simi
model, viz., the NLS equation:

iut1
1

2
Duxx1uuu2u52 igu1~ iG12G2!d~x!u, ~15!

whereD is the spatial-dispersion coefficient,g andG1,2 hav-
ing the same meaning as above. If the variablet in Eq. ~15!
is replaced by the propagation distancez, andx is realized as
the transverse coordinate in a planar lossy waveguide,
~15! may be interpreted as describing spatial solitons in
above-mentioned case when the gain is applied along a
row strip in the waveguide. In fact, the NLS model is a lim
case of the BG system for small-amplitude solitons~see, e.g.,
Ref. @8#!; accordingly, Eq.~15! is a small-amplitude limit of
Eqs.~1! and ~2!. Nevertheless, it is pertinent to consider t
8-3
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NLS model parallel to the BG one, as it will help to unde
stand the results for the BG system.

A perturbation mode in linearized equation~15! is sought
for as @cf. Eqs.~7! and ~8!#

u~x,t !5A1exp~2 ixt2kx! at x.0,
~16!

u~x,t !5A2exp~2 ixt1kx! at x,0,

with Rek.0. The substitution of Eq.~16! into the linearized
version of Eq.~15! yields

x52@~D/2!k21 ig# ~17!

and the integration of Eq.~15! in an infinitesimal vicinity of
x50 leads toA15A2 , and

Dk5G22 iG1 . ~18!

Note that the necessary condition Rek.0 and Eq.~18! show
that, in fact, the perturbation mode~16! exists only in the
caseG2D.0. It is easy to understand the meaning of t
latter condition: the inhomogeneity isattractive in this case,
hence it can support the local mode.

The substitution of Eq.~18! into Eq. ~17! yields a final
result

x52F ~G22 iG1!2

2D
1 igG . ~19!

As it follows from Eq. ~19!, the instability-onset condition
Imx.0, means, in the present case,

G1.~G1!cr[Dg/G2 . ~20!

Thus, as well as in the case of the hot spot in BG, Eq.~20!
demonstrates that the hot spot in the NLS model cannot
rise to the instability, unless it contains the imaginary pa
Unlike the BG model, the additional conditionG2D.0 is
also necessary for the instability.

C. An exact solution in the conservative model

An exact solution for the pinned soliton is available f
the conservative version of the full nonlinear model, withg
5G150. In this case, it is easy to see that Eqs.~5! and ~6!
admit an invariant reduction,V(x)52U* (x) ~the asterisk
stands for the complex conjugation!, which leads to a single
equation

F i
d

dx
1cosu1G2d~x!GU13uUu2U2U* 50. ~21!

As it follows from the integration of Eq.~21! around the
point x50, the solution must satisfy a boundary conditio

U~x510!5U~x520!exp~ iG2!. ~22!

An exact solitonlike solution to Eq.~21!, supplemented by
condition ~22!, can be found, following the pattern of th
exact solution for the ordinary gap soliton in the model w
G250 @5#:
02660
e
t.

U~x!5
1

A3

sinu

coshF ~x1a sgnx!sinu2
i

2
uG , ~23!

where sgnx[61 for positive and negativex, and the real
parametera is determined by the relation

tanh~a sinu!5
tan~G2/2!

tan~u/2!
. ~24!

A corollary of the expressions~23! and ~24!, which will be
used below, is

uU~x50!u25
2

3
~cosG22cosu!. ~25!

From Eq.~24! it follows that the solution exists not in th
whole interval 0,u,p, where the ordinary gap solitons ar
found, but in a region determined by the constraint th
utanh(asinu)u,1, i.e., utan(G2/2)u,tan(u/2), or

uG2u,u,p ~26!

~which implies that the solutions exist only ifuG2u,p).
Although the exact solutions found above exist for eith

sign of G2, it is expected that only in the caseG2.0 they
may be stable, as in this case the local inhomogeneityat-
tracts the soliton ~which is natural, as positiveG2 corre-
sponds to a local enhancement of the refractive index, an
bright soliton is always attracted to an optically denser sp!
@14#. In particular, in the case of smallG2 the soliton may be
regarded as a quasiparticle in an effective inhomogene
induced potential

W1~j!52
8G2

3

sin2u

cosh~2j sinu!1cosu
, ~27!

where j is a displacement of the soliton’s center from t
point x50 @14#. It is obvious that this potential indeed co
responds to the attraction and repulsion in the casesG2.0
andG2,0.

Note that the exact solution is a single-humped one, w
a maximum at the pointx50, if G2.0; in the opposite case
the solution is double humped, with a local minimum atx
50 and local maxima atx56uau, as in this case Eq.~24!
givesa,0. In the limiting caseu2uG2u→0 @see Eq.~26!#,
Eq. ~25! shows thatuU(x50)u vanishes, i.e., the soliton
pinned by the attractive inhomogeneity, withG2.0, reduces
to zero, while the unstable two-humped state pinned by
repulsive inhomogeneity, withG2,0, goes over into a pair
of two infinitely separated solitons withu52G2.

D. The first-order approximation for the full model

In the caseg5G150, Eqs.~1! and ~2! conserve the ne
energy

E5E
2`

1`

@ uu~x!u21uv~x!u#2dx. ~28!
8-4
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FIG. 1. Analytically predicted solution branches for the pinned soliton in the case of weak loss and gain. Shown isu2G2 vs the stress
parameterG1 /g. ~a! An example of the caseG2,p/2 is displayed withG25p/4. ~b! An example of the caseG2.p/2 is displayed with
G253p/4. ~c! G25p/2. ~d! G250. In the last case, nontrivial solutions appear at the pointu50.7442p, G1 /g51.3801, and at large value
of G1 /g the continuous curve asymptotically approaches the horizontal axis. In all the panels, the dashed lines show a formal con
of the solutions in the unphysical regions,u,G2, andu.p. In the panels~a!, ~b!, and~c!, the trivial solution,u2G250, is shown by the
solid line where it is stable; in the case corresponding to the panel~d!, all the axisu50 corresponds to the stable trivial solution.~Note that
all quantities plotted are dimensionless.!
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In the presence of the loss and gain, the exact evolu
equation for the energy is

dE

dt
522gE12G1@ uu~x!u21uv~x!u2#ux50 . ~29!

If the coefficientsg and G1 are treated as small perturb
tions, the balance condition for the energy,dE/dt50, may
select a particular solution, from the family of the exact s
lutions ~23! of the conservative model, which remains, to t
first approximation, a stationary pinned soliton in the f
model.

The balance condition following from Eq.~29! demands

gE5G1@ uU~x50!u21uV~x50!u2#. ~30!

Substituting, in the first approximation, unperturbed so
tions ~23! and ~24! into Eq. ~30!, and taking into regard the
definition ~28!, the balance condition can be cast, after so
algebra, in a simple form

u2G2

cosG22cosu
5

G1

g
. ~31!
02660
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As the pinned soliton may only be stable ifG2.0, we con-
sider this case. Note also that, according to Eq.~26!, we
should constrain the consideration to the intervalu.G2, as
otherwise the pinned solitons do not exist in the zero
proximation (g5G150).

The pinned-soliton selected by Eq.~31! is expected to
appear, with the increase of thestress parameterG1 /g, as a
result of some bifurcation. The inspection of Fig. 1, whi
displays (u2G2) vs G1 /g, as found from Eq.~31!, shows
that the situation is qualitatively different in the casesG2

,p/2 andG2.p/2.
In the former case, atangent ~saddle-node! bifurcation

@19# occurs at a minimum value (G1 /g)min of the stress pa-
rameter at which Eq.~31! has a physical solution foru, and
two solutions exist forG1 /g.(G1 /g)min . An additional
analysis of Eq.~31! demonstrates that, with the variation o
G2, the value (G1 /g)min attains an absolute minimum
G1 /g51, atG25p/2.

With the increase ofG1 /g, the lower solution branch tha
starts at the saddle-node bifurcation point@see Fig. 1~a!# hits
the limit point u5G2 @see Eq.~26!#, where it degenerate
into the zero solution, according to Eq.~25!. Equation~31!
shows that this happens at the pointG1 /g51/sinG2. On the
other hand, it was shown above@see Eq.~14!# that, precisely
8-5
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at the same point, the zero solution becomes unstable, in
limit of small G1 andg. According to the general stability
exchange principle@19#, the fact that the zero-solutio
branch gets unstable after its collision with another solut
branch implies that the latter branch was already unsta
Therefore, we conclude that the branch that appears a
saddle-node bifurcation and ceases to exist hitting the z
solution, is an unstable saddle.

The other~upper! branch generated by the saddle-no
bifurcation@Fig. 1~a!# continues until it attains the maximum
valueu5p relevant to the physical solutions, which happe
at

G1

g
5S G1

g D
max

[
p2G2

11cosG2
. ~32!

This branch corresponds to the node-type solution that
pears at the saddle-node bifurcation point, therefore it ha
chance to be stable. However, it may be unstable aga
perturbations that are not taken into regard by this elem
tary consideration~for instance, the possibility of a shift o
the soliton’s center from the pointx50 was not taken into
regard!. The actual situation with the stability of pinned so
tons in the model including the loss and gain is rather co
plicated, see the following section.

In the caseG2.p/2, the situation is different, as th
saddle-node bifurcation is imaginary in this case, occurr
in the unphysical regionu,G2, see Fig. 1~b!. The only
physical branch of the solutions appears at the pointG1 /g
51/sinG2, where it crosses the zero solution, lending it u
stable, which the branch presumably had in the unphys
region. The stability-exchange principle that was alrea
mentioned above suggests that, from the viewpoint of
present analysis, this branch becomes stable when it cro
into the physical region,u.G2. However, as well as the
other branch considered above for the caseG2,p/2, the
present one may be subject to instabilities of other typ
This branch ceases to be a physical one at point~32!.

At the border between the two generic cases conside
above, i.e., atG25p/2, the saddle-node bifurcation occu
exactly at the pointu5p/2, see Fig. 1~c!. In this case, the
destabilization of the zero solution happens at the sa
point.

The situation is different in the caseG250 @see Fig. 1~d!#,
when the hot spot has no refractive-index-perturbation co
ponent, and Eq.~31! takes the form

u

2 sin2~u/2!
5

G1

g
. ~33!

In this case, as it was stressed above, the zero solutio
never destabilized, in accordance with which the solut
branches do not cross the axisu50 in Fig. 1~d!. The lower
branch, which asymptotically approaches theu50 axis,
must be unstable~this is a generic feature in the case wh
the amplitude of the solution decreases with the increas
the stress parameter@19#!, hence the upper branch may b
stable within the framework of the present analysis. Ho
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ever, direct numerical simulations presented below dem
strate that, in the caseG250, the pinned soliton is always
unstable against the displacement of its center from the p
x50.

It may be relevant to compare these results with those
can be obtained for pinned solitons in the NLS model co
taining the loss and ‘‘hot spot,’’ see Eq.~15!. NLS solitons
may only exist ifD.0, therefore we adopt the normaliza
tion D51 in Eq. ~15!, and it makes sense to consider on
the case when the inhomogeneity is attractive, i.e.,G2.0,
otherwise the pinned soliton has no chance to be stable. N
that, once we chooseD.0 and G2.0, the zero solution
may be unstable, according to the results presented abo

In the conservative limit,g5G150, the pinned NLS soli-
ton is given by a commonly known solution,

u5h sech@h~ uxu1a!#expS i

2
h2t D , ~34!

a5
1

2h
lnS h1G2

h2G2
D , ~35!

whereh is an intrinsic parameter of the solution family. No
that, as we assumeG2.0, Eq. ~35! yields a.0, hence ex-
pression~34! has a single maximum atx50.

If now g andG2 are introduced as small parameters, t
energy-balance condition for this solution can be easily c
in the form h52G212g/G1. In view of relation~35!, the
actual solution exists in the regionh.G2, or, eventually, in
the interval

0,G1,g/G2 . ~36!

Comparing this result with expression~20! that deter-
mines the instability threshold for the zero solution, and ta
ing into regard thatD51, we conclude that the pinned
soliton singled out by the balance condition disappe
@crosses into the unphysical region, cf. Fig. 1~a!#, with the
increase of the stress parameter,G1 /g, exactly at the point
where the zero solution loses its stability. According to t
above-mentioned stability-exchange principle, this impl
that the zero solution inherits its instability from the solito
hence the soliton solution, given by Eqs.~34! and ~35!, is
definitely unstablein all the region of its existence.

This conclusion demonstrates that the above results
the pinned solitons in the BG model are nontrivial, as th
give the pinned gap soliton a chance to be stable, whic
not possible at all in the simpler NLS model. Actual stabili
of the pinned gap solitons will be studied below by means
direct simulations.

III. NUMERICAL RESULTS FOR PINNED SOLITONS

A. The approximation for the d function

For the simulations, we have to adopt a numerical form
thed function in Eqs.~1!, ~2!, ~5!, and~6!. We use the same
numerical scheme as in the recent work@14#. The scheme
discretizes the coordinatex by 501 grid pointsxj , j5
8-6
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2250, . . . ,21,0,11, . . . ,1250. As an approximation to th
d function, we assume the following function is defined on
set of 2N11 grid points in the central part of the integratio
domain, located symmetrically around zero,

FIG. 2. Typical results illustrating the stability and instability
pinned solitons in the caseg5G150, and G250.4. Each panel
shows the evolution ofuu(x,t)u, starting with the exact pinned
soliton configuration~the evolution ofuv(x,t)u is quite similar!. ~a!
u in50.4p is smaller thanustab: the soliton decays into radiation.~b!
u in50.8p.ustab: the initial soliton transforms itself into a stabl
one, shedding off excess energy in the form of radiation.~c! u in

50.5p'ustab. Direct appearance of the stable soliton.
02660
d̃~xn2(N11)!

[H A cosS n2~N11!

2N11
p D for n51, . . . ,2N11

0 elsewhere.

~37!

The normalization factorA is defined so as to maintain th
canonical normalization of thed function, *2`

1`d̃(x)dx

[( j d̃(xj )Dx51, which yields

A5FDx (
n51

2N11

cosS n2~N11!

2N11
p D G21

, ~38!

Dx being the spacing of the grid~in fact,Dx50.04). In most
cases presented below, we useN52 $then Eq. ~38! with
Dx50.04 yieldsA5@(11A5)Dx#21'7.726%, which makes
the d function quite narrow indeed.

B. Stability of the pinned solitons in the conservative model

Since exact stationary solutions to Eqs.~5! and~6! for the
pinned soliton are available in the caseg5G150, in the
form of Eq.~23! supplemented by Eq.~24!, numerical test of
their stability is straightforward. We simulated the stabili
by means of the split-step method applied to Eqs.~1! and~2!,
employing the fast Fourier transform. The exact solution~23!
was taken as the initial configuration, and the correspond
valueu in of u was varied. The valuesu in,uG2u, at which the
exact solution does not exist@see Eq.~26!# were probed too.
In this case, Eq.~24! yields an imaginary value ofa, and the
initial configuration was taken in the form of Eq.~23! with
the imaginarya. Even though the latter configuration is not
stationary solution, it is still nonsingular and localized, so
can be used to launch the PDE simulation.

As expected from what was mentioned above, in the c
G2,0 all the pinned states of the solitons are found to
unstable. Solitons are pushed away from the pointx50, in
accord with the expectation that the inhomogeneity is rep
sive. It was also observed that, asuG2u increases, atG2<
20.7 a small soliton is left behind around the pointx50
after the main pulse has separated from it; however, the
sidual soliton is also unstable and gradually decays into
diation.

For positiveG2, typical results regarding the stability o
the pinned solitons are displayed in Fig. 2. A conclusion
that there is asingle valueustab'p/2 of the soliton paramete
u, such that ifu in,ustab, the soliton decays into radiation, a
is seen in Fig. 2~a!. Solitons withu in.ustabrelax into a stable
one with u5ustab, see Fig. 2~b!. Finally, a soliton withu in
5ustab directly gives rise to the stable soliton, see Fig. 2~c!.

The examples shown in Fig. 2 pertain toG250.4, and
similar results were obtained for other values ofG2. Avail-
able computational power imposes a limitation on accur
with which ustab can be identified. However, it was foun
that, for G250.1, the decrease of the soliton’s amplitud
which is defined asuu(x50)u, is less than 1% after the
evolution timeT5200p, if u in is taken from the interval
8-7
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MAK, MALOMED, AND CHU PHYSICAL REVIEW E 67, 026608 ~2003!
(0.49p,u in,0.52p), hence, in any case,ustab(G250.1) be-
longs to the same interval. For a much larger value of
perturbation parameter,G251.1, the corresponding interva
is 0.51p,u in,0.55p, henceustab(G251.1) belongs to this
region. Generally,ustab slightly increases withG2.

Figure 3 summarizes these results in the form of a plo
the (G2 ,u in) plane, which shows the regions where the init
soliton relaxes to the stable one or decays into radiation
the regionu in,uG2u, where the initial configurations are no

FIG. 3. A summary of results obtained for the stability of pinn
solitons, plotted in the (G2 ,u in) plane, in the conservative mode
with g5G150. In the upper region, whereu.ustab, initial solitons
evolve into the stable one, shedding off extra energy. In the lo
region, whereu,ustab, solitons completely decay into radiation
Beneath the lower solid line, which borders the region whereuG2u
,u,p, see Eq.~26!, stationary solutions for the pinned solitons d
not exist. Accordingly, an initial pulse taken as a formal ‘‘soliton
with an imaginary root of Eq.~24! substituted fora ~see the text!, is
immediately destroyed.
02660
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true stationary solutions, this configuration decays into rad
tion immediately.

These results, obtained for the conservative model w
the local inhomogeneity of the refractive index, are ve
similar to those reported in Ref.@14# for the stability of the
solitons pinned by an attractive inhomogeneity in the form
a local suppression of the Bragg grating. A noticeable co
mon feature of the results is the existence of thesingle~up to
the numerical accuracy available! valueustab'p/2 of the pa-
rameteru, which the established soliton may assume. In b
conservative models~those considered here and in Ref.@14#!,
u in relaxes toustab if u in.ustab, and the soliton decays into
radiation if u in,ustab, i.e., the soliton withu5ustab may be
called asemiattractor. In fact, it strongly resemblessemi-
stablesolitons, which are stable against small perturbatio
in the linear approximation, but may be unstable if term
quadratic in the perturbations are taken into account. Se
stable solitons were recently studied in another context
the so-called embedded solitons, see Ref.@20# and references
therein.

The fact that all the solitons withu in.ustab, whereustabis
slightly larger thanp/2, relax to the valueu5ustab, may be
related to a known property of the ordinary solitons in t
unperturbed BG model (g5G15G250): they are unstable
if u.ucr

(0)'1.011(p/2) @11#. Thus, at least in the case whe
G2 is small, it is natural to expect that any pinned solit
with u.p/2 will relax, as a result of the instability, to
value close toucr

(0) . What is less obvious, is the decay of th
solitons withu,ustab, and the fact thatustab so weakly de-
pends onG2 ~see Fig. 3!.

C. The pinned soliton in the lossy medium
with the localized gain

In direct simulations of the full model, which includes th
loss and local gain, the exact solution~23! of the conserva-
tive version was again used as the starting point. The ev
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in
ic
y

n
t-
FIG. 4. Evolution of the amplitude of the
pinned soliton in the full model with loss an
gain, in the case withG250.5, g50.0316, and
u in50.5p. If G150.042 08, the gain is insuffi-
cient to balance the loss, and the soliton deca
When G150.042 09, the soliton initially grows,
and its intrinsic vibrations develop. WhenG1

takes a slightly larger value, 0.042 15, the initi
growth of the amplitude is steeper, which aga
results in the establishment of regular intrins
vibrations ~in this case, the oscillations are ver
similar to those supported byG150.042 09).
When G1 is essentially larger, for instance,G1

50.057, interval vibrations of the pinned solito
become chaotic~the latter case shown by the do
ted line!.
8-8
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INTERACTION OF A SOLITON WITH A LOCALIZED . . . PHYSICAL REVIEW E67, 026608 ~2003!
tion of the solution was simulated at a fixed value of the lo
parameterg. The local gainG1 was varied in order to deter
mine its value~s! at which the soliton settles down to a stab
pinned soliton.

Figure 4 shows the evolution of the soliton’s amplitud
defined asuu(x50)u, vs t, when the localized gainG1 is
varied. The other parameters are fixed, so that

G250.5, g50.0316, u in50.5p. ~39!

For a small value ofG1 (G150.042 08 in Fig. 4!, which is
insufficient to balance the loss, the soliton decays. Fo
slightly largerG150.042 09, the soliton’s amplitude grow

FIG. 5. The profiles ofuu(x,t)u ~solid lines! and uv(x,t)u
~dashed lines! at the end of the simulation~narrow peaks placed a
x50 mark the ‘‘hot spot’’!. The values ofg, G2, andu in are the
same as in Fig. 4.~a! G150.042 09 is barely enough to support th
soliton against the loss. In this case, the soliton emits radiation
low rate.~b! G150.057. The soliton emits radiation at a high ra
02660
s

,

a

then it temporarily settles down~at the value 1.47 in Fig. 4!,
and, eventually, regular oscillations set in. A long simulatio
up to t5600p ~see Fig. 4! shows that the intrinsic vibration
of the soliton are completely stable. The waveformsuu(x,t)u
and uv(x,t)u, obtained at the end of the simulation forG1
50.042 09, are shown in Fig. 5~a!.

When the gainG1 is further increased, the initial growth
of the soliton’s amplitude is sharper; however, it is found th
it again temporarily settles down to a nearly constant va
close to the same level of 1.47 as above, which is follow
by the onset of persistent oscillations. WhenG1 is still larger,
the eventual oscillatory state becomes chaotic with la
fluctuations. The corresponding wave forms ofuu(x)u and
uv(x)u at the end of the simulation (t5300p) for G1
50.057 are shown in Fig. 5~b!. It can be seen that conspicu
ous radiation tails are attached to the soliton, which implie
permanent energy leakage from it. This extra loss adds u
the direct dissipative loss, both being compensated by
localized gain. IfG1 is too large, the radiation wave fiel
outside the main pulse grows to such an extent that the
sulting wave form cannot be regarded as a localized one
fact, in this case it is observed that the main pulse separ
from the pointx50, drifts away, and dies down due to th
loss. However, the strong localized gain generates a
‘‘soliton’’ around x50, which later drifts away again, thi
process repeats itself quasiperiodically.

An important feature of these results is that a stable~even
though it is vibrating! soliton is possible not at a single valu
of the gain, that exactly compensates the loss, but in a fi
interval of values of the gain. The energy balance is ma
tained, in this case, through permanent emission of radia
by the soliton, which compensates the excessive gain.
relevant to mention that a very similar mechanism, wh
gives rise to stablenonequilibrium solitonsin an over-
pumped system of a different type~that, however, also origi-
nates in nonlinear optics—the so-called split-step mod!,
was recently considered in detail in Ref.@22#. In that case

a

-
FIG. 6. The frequency spectrum of the time
dependent amplitudeuu(x50,t)u of the pinned
soliton at different values of the local gainG1,
after persistent vibrations set it:~a! G1

50.042 09,~b! G150.056 33,~c! G150.056 34,
~d! G150.5636, and~e! G150.056 90. In all the
cases,g50.0316,G250.5, andu in50.5p.
8-9
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FIG. 7. The soliton’s amplitudeuu(x50,t)u vs
t for three different values of the initial amplitud
u in . In each case, the value of the gainG1 is
chosen as the minimum one, which can supp
the establishment of a soliton. Other paramet
are fixed:G250.5 andg50.01.
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too, the stability of the soliton is provided by the emission
radiation that balances the excess gain.

A further insight in sustained intrinsic vibrations of th
pinned soliton, and the transition from the regular oscil
tions to dynamical chaos, is provided by consideration of
spectrum of the functionuu(x50,t)u. In the established os
cillatory regime, the spectrum was computed at several
ferent values ofG1, while the other parameters were ke
constant as per Eq.~39!. Figure 6~a! shows the spectrum fo
G150.042 09, which is the value barely enough to comp
sate the loss. It can be seen that the established oscilla
are quasiharmonic, with a single well-pronounced freque
2.9 ~in arbitrary units!, and an additional tiny spectral com
ponent at the frequency'2 ~which is, apparently, incom
mensurate with the main one!.

Figure 6~b! shows the spectrum forG150.5633, which is
similar to that in Fig. 6~a!. The main frequency shifts dow
to a value about 2.8, with two other visible compone
found at the frequencies 0.8 and 1.4. Then, suddenly,
slightly larger gain,G150.5634, many new conspicuou
spectral components emerge, which is shown in Fig. 6~c!,
and corresponds to~apparently! chaotic intrinsic vibrations
of the established soliton. The same behavior is observe
G150.5635. At G150.5636, the picture suffers anoth
abrupt change@see Fig. 6~d!#: the power spectrum revert
back to the simple three-frequency-component struc
reminiscent of the situation at lowerG1, cf. Fig. 6~b!. A
transition from a chaotic behavior,~presumably! accounted
for by a strange attractor, to a simple quasiharmonic beha
is known in the theory of dynamical systems, where it
called a ‘‘boundary crisis’’ of the chaotic attractor@21#.

The picture revealed by the simulations changes the t
time at G150.5640, with reappearance of a man
component chaoticlike spectrum, similar to that in Fig. 6~c!.
The chaotic behavior continues to higher values ofG1. Fig-
ure 6~e! shows the spectrum atG150.056 90, where its
structure is not simply a multicomponent one, but contin
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ous, which is characteristic for well-developed dynamic
chaos.

Another way to describe basic properties of the pinn
solitons in the full model is to identify, for various initia
values ofu in , a minimum value (G1)min of the gain which is
necessary to overcome the loss. Figure 7 shows the evolu
of the soliton’s amplitudes as a function of time foru in

50.2p, 0.5p, and 0.9p, the corresponding minimum val
ues being (G1)min50.0239, 0.0133, and 0.0131, while th
other parameters are fixed,g50.01 andG250.5 @note that
all these values ofu in exceedG2, hence the correspondin
exact solitons in the conservative model do exist, accord
to Eq. ~26!#. Thus, unlike the conservative model, in the fu
model, values ofu in essentially smaller thanp/2 may give
rise to a stable pinned soliton~with intrinsic vibrations!.
However, the smaller the differenceu in2G2, the larger value
of G1 is necessary, as, according to Eqs.~29! and ~25!, the
rate at which the localized gain supplies energy to the sol
decreases;(u in2G2) as u in2G2→0. On the other hand
analysis of the simulation results shows that the characte
tics of the established soliton do not depend on the ini
value ofu in, which excited it, but solely on the values ofg
andG1,2, i.e., the established soliton is a genuineattractor.

Then, effects caused by varying the loss parameterg were
investigated. Because of the necessity to satisfy the ene
balance condition,G1 needs to be changed to track the var
tion of g. For each value ofg, we tried to find the minimum
size of G1 that supports a stable soliton. Results of the
numerical experiments, obtained for fixedG250.5 andu in
5p/2, and a set of valuesg50.000 316, 0.001,
0.003 16, 0.01, 0.0316, and0.1, are displayed in Fig. 8
The respective minimum-gain values were found to
(G1)min 5 0.000 422, 0.001 40, 0.004 22, 0.0133, 0.042 0
and 0.1327. It is interesting to note that, except for the s
ond case, when the ratio (G1)min /g is 1.40, in all the other
ones the ratio takes values between 1.32 and 1.34.
8-10
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FIG. 8. The amplitude of the soliton,uu(x
50,t)u, vs t for different values of the loss pa
rameterg. Each time the value of the gainG1 is
chosen as the smallest one, which leads to
establishment of the soliton. Other parameters
fixed: G250.5 andu in50.5p.
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It is clearly seen from Fig. 8 that the amplitude of th
established soliton monotonically increases with the gro
of g ~which is accompanied by the growth of the minimum
gain necessary to support the soliton!. It is also seen that it
was never possible to produce a truly stationary soliton,
in some cases (g50.000 316, 0.003 16, 0.01, and 0.1)
was possible to generate nearly stationary solitons wit
small amplitude of intrinsic vibrations. In other casesg
50.001 and 0.0316), varyingG1 by steps as small as it wa
admitted by the numerical scheme, it wasnot possible to
adjust the gain so that to suppress the internal vibrations,
the established soliton remained a breather, rather than
thing close to a fixed-point state.

In all the cases presented in Fig. 8,g and G1 are small
enough to treat them as perturbations. Then, if the es
lished soliton assumes a nearly stationary form, it is natu
to expect that it must be close to solution~23! found in the
conservative model, with some value ofu, and thisu must

TABLE I. Values of the loss parameterg at which quasistation-
ary stable pinned solitons were found by the adjustment of the
G1 ~see Fig. 8!, while the refractive-index perturbation is fixed
G250.5. The corresponding values of the gain, (G1)num, are also
included, together with the values of the soliton parameteru which
provide for the best fit of the quasistationary solitons to analyt
solution ~23!. The values (G1)anal are those predicted, for giveng
and u, by energy-balance equation~31!, which does not take the
radiation loss into account.

g u (G1)num (G1)anal

~G1!num2~G1!anal

~G1!anal

0.000316 0.5p 0.000422 0.000386 0.0944
0.00316 0.595p 0.0042 0.00369 0.1373

0.01 0.608p 0.01333 0.01165 0.1442
0.1 0.826p 0.1327 0.121 0.0967
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be related tog andG1 as per Eq.~31!.
It was checked that the quasistationary solitons, in th

cases when they were found, are indeed close to wave f
~23!. The corresponding values ofu were identified by
means of the least-squared-error fit to expression~23!. Then,
for thus found values ofu and given values ofg, the equi-
librium values of the gainG1 were calculated as predicted b
the analytical formula~31!. The results of these are present
in Table I.

A noticeable fact obvious from Table I is that, in all th
cases, the numerically found equilibrium value of the ga
exceeds the analytically predicted one by 9 to 14%. Beca
in all the cases, as it was stressed above, the establi
solitons are not completely stationary, a natural conjectur
that the slightly vibrating soliton continuously emits ener
at a low rate, and this extra energy loss makes it necessa
have the gain somewhat larger than that which compens
the direct dissipative loss as per Eq.~31!.

As concerns the comparison of the full model with
conservative counterpart, we recall that, in the conserva
model, the stable pinned soliton always assumes a si
value ofu for givenG2 ~and this value very weakly depend
on G2, always being slightly larger thanp/2, see Fig. 3!. On
the contrary to this, in the full model the quasistationa
soliton may be stable in a range of the values ofu, as it is
evident from Table I.

Finally, it has also been checked whether stable pin
solitons can be found when the ‘‘hot point’’ does not pertu
the refractive index, i.e.,G250. As a result, it has been
concluded that any finite positiveG2 ~the smallest value tried
was G250.01) may support a stable soliton in the pinn
state, but ifG250, the pulse set atx50 finally drifts away,
and then decays due to the loss. An explanation to this fi
ing may be that all the solitons found in the model with lo
and gain emit some radiation, see above, and asymm
fluctuations in the emission rate create a weak random fo
that drives the soliton away.
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D. Soliton pinned between two repulsive inhomogeneities

The soliton may be stably pinned not only by an attract
inhomogeneity, but also between two separated repul
ones~in the present context, each one will represent a loc
suppressed refractive index, corresponding toG2,0). The
consideration of this configuration is interesting by itself, a
it also may be used to design a soliton-based optical osc
tor, in which the eigenfrequency is easily controlled by t
choice of the separation between the two repulsive points
particular, in the framework of the perturbation theory~for
small uG2u), the soliton may be regarded as a quasiparticle
the external potential

W2~j!5W1S 1

2
L2j D1W1S 1

2
L1j D , ~40!

where the potentialW1(j) is given by Eq.~27! ~with G2
,0), andL is the separation between the two defects.

We simulated the dynamics of this configuration in so
detail, but only for the conservative case,g5G150. First, if
L is smaller than the proper size of the soliton, it sees the
of the inhomogeneities, in the first approximation, as a sin
repulsive center, hence stable bound states are not pos
Within the framework of the perturbation theory, Eqs.~40!
and~27! make it possible to predict a critical value (Dj)cr at
which a stable equilibrium appears for the first time atx
50. The corresponding expression is cumbersome, bu
easy to verify that (Dj)cr monotonically decreases, withu
varying from 0 top/2, from (Dj)cr5` to the minimum
value (Dj)cr5 ln(A211)'0.88.

Direct simulations at finiteG2 demonstrate@see an ex-
ample in Fig. 9# that, in the case of relatively smallL, when

FIG. 9. The interaction of a soliton with a pair of repulsiv
points (G2520.7), with a relatively small separation betwee
them,L51.84, in the conservative model.~a! The initial configu-
ration, with u in5p/2. ~b! The result of the interaction: splitting o
the soliton into two pulses, which is accompanied by a spontane
symmetry breaking. The solid lines showuuu, and the dashed line
show uvu. Note that, in the initial configuration,uuu and uvu are
indiscernible.
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the pinned state of the soliton is unstable, the dynam
evolution does not trivially reduce to pushing the solit
aside; instead, a generic outcome issplitting of the soliton in
two, which is accompanied by a spontaneous symme
breaking~in some cases, for instance ifu in50.7p, the other
parameters being the same as in Fig. 9, the instability de
ops so slowly that it was not possible to identify the ou
come!.

With the increase ofL, stabilization of the soliton trapped
between the repulsive inhomogeneities becomes poss
The trapped states seem most stable around the valuL
53.84, see an example in Fig. 10. In this case, system
simulations reveal a feature that strongly resembles that
ported above for the single attractive inhomogeneity in
conservative model: an established trapped state is stabl
a single~up to the accuracy of numerical simulations! value
of u, which is very close top/2; if u in.p/2, the soliton
sheds off some radiation and eventually relaxes to the
single value ofu ~see Fig. 10!, while if u in,p/2, the soliton
gradually decays into radiation. Thus, the single valuedn
of the stable soliton in the conservative model appears to
a generic property. For still larger values ofL, the pinned
state is less robust; in particular, a soliton withu in.p/2 may
split, instead of relaxing to the stable one withu'p/2.

IV. COLLISION OF A MOVING SOLITON WITH THE
LOCALIZED GAIN

Once the existence of stable pinned soliton has been
tablished, the next natural step is to consider a possibility
capturing a free moving soliton by the ‘‘hot spot.’’ To thi
end, the soliton was first generated far from the spot
means of the Newton-Raphson method, as a stationary s
tion in the reference frame moving at some velocityc; a
range of the velocities 0<c<0.7 was thus investigated
Then, the collision was considered, running direct simu
tions of Eqs.~1! and ~2!.

First, the collision experiment was performed in the co

us

FIG. 10. Stable soliton captured between the repulsive po
(G2520.5) with the separationL53.84 between them, in the con
servative model. Shown is the evolution of the fielduu(x,t)u. The
initial value of the soliton parameter isu in50.7p.
8-12
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FIG. 11. Collision of a moving soliton, with fixed valuesu50.7p andc50.4, and the inhomogeneity in the conservative model~the
inhomogeneity is shown by a narrow peak which, for an unessential reason, is shifted from the pointx50). The lower and upper panel
show, respectively, the evolution of the fielduu(x,t)u in terms of the contour plots, and the wave formsuu(x)u anduv(x)u ~solid and dashed
lines! at the end of the simulation~note that theu andv components are asymmetric in the moving solitons!. ~a! The soliton passes throug
a weak defect withG250.2. ~b! A stronger defect, withG250.5, captures a part of the energy of the passing soliton, to form a sm
amplitude pinned one. Another small part of the energy bounces back in the form of radiation.~c! If the defect is still stronger,G250.9, the
shares of the trapped and bounced energy are larger.
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servative model, withG15g50. The parameter plan
(c,G2) was explored withc taking values 0.1,0.2, . . . ,0.7,
and G2 taking values 0.1,0.2, . . . ,0.9, while u in was kept
constant at 0.7p.

If the inhomogeneity is weak, the moving soliton pass
through it, see an example in Fig. 11~a!. When the inhomo-
geneity strength is larger,G2*0.5, a part of the soliton stil
passes through it, but another part of the soliton’s energ
captured by the local defect to form a pinned soliton,
example of which is shown in Fig. 11~b!. Some radiation
bouncing in the backward direction can also be obser
whenG2 is large, or when the incident soliton is fast. Nat
rally, more energy is trapped by the defect ifG2 is larger
@Fig. 11~c!#, and less energy is trapped if the soliton is fas
However, the valueG2'0.5, at which the trapping begins
only weakly depends on the soliton’s velocityc. Figure 12
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summarizes these results, showing a border in the (c,G2)
plane between the passage and partial-capture regions.

Next, we consider the collisions in the full model, wit
g50.01 andG1 50.015. Results reported in the precedi
section show that a stable pinned soliton exists at these
ues of the loss and gain~the collisions were simulated onl
for small values ofg, as otherwise the soliton will be
strongly attenuated still before the collision!. The initial
value of the soliton’s parameter was againu in50.7p.

The results obtained for the full model are not very d
ferent from those for the conservative one. When the gainG2
is small, the soliton passes through, and ifG2 is larger, a part
of the energy is trapped to form a pinned soliton. A diffe
ence from the conservative model is that the value ofG2 at
which the inhomogeneity starts to capture a part of the s
ton’s energy in the conservative model is approximately
8-13
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dependent of its velocity:G2'0.5 if c.0.1, while in the
lossy model, this value ofG2 increases withc, as is seen in
Fig. 12.

Another representative set of numerical data can be
played for a fixed value of the soliton’s velocity,c50.1,
while the parameteru in of the incident soliton takes value
0.1p,0.2p, . . . ,0.9p, and G250.1,0.2, . . . ,0.9. These re-
sults are presented here only for the conservative mode

Simulations show that, if the moving soliton is hea
~largeu in) or the inhomogeneity is weak, the soliton pass
it. Heavier solitons can pass through a stronger defect. If
inhomogeneity is strong (G2 is large!, the soliton gets
trapped, which is always accompanied by emission of ra
tion in both the forward and backward directions, and
radiation can further self-trap into secondary solitons.
smallG2, little energy is scattered away in either direction.
G2 is larger, more energy is scattered forward, and whenG2
is still larger (G2'0.9), more energy is scattered backwar
cf. Fig. 11~c!. Figure 13 summarizes the results obtained
the interaction of the moving soliton and the localized attr
tive defect in the conservative model for the fixed veloci
c50.1.

It is natural to compare the results obtained for the c
servative model with those reported in Ref.@14# for the in-
teraction of the moving gap soliton with an attractive inh
mogeneity in the form of a local suppression of the Bra
grating. In that case, when the soliton was heavy~largeu),
the interaction effectively reverted from attraction to rep
sion, so that the incident soliton could bounce back. In
present model, this unusual behavior has never been
served.

V. CONCLUSION

In this work, we have introduced a model of a lossy no
linear fiber grating with a ‘‘hot spot’’ combining the localize

FIG. 12. Borders in the parametric plane (c,G2) between re-
gions in which the moving soliton with fixedu50.7p passes the
defect or gets partially trapped. The solid line is the border in
conservative model, withg5G150. The dashed line is the borde
in the full model withg50.01 andG150.015.
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gain and attractive inhomogeneity of the refractive index;
spot can be created by means of doping a short segme
the fiber. In the absence of the loss and gain, a family
exact solutions for pinned solitons was found. In the f
model including loss and gain, the instability threshold f
the zero solution was found; it was concluded that the ins
bility is not possible without the presence of the imagina
part of the local gain, i.e., a localized perturbation of t
refractive index. Further, for small values of the loss a
gain, it was predicted what soliton is selected by the ener
balance condition. Parallel to this, it was shown that, in
simpler model based on the NLS equation, the pinned sol
can never be stable in the presence of the loss and local g

In direct simulations, we have found that a single pinn
soliton is stable in the conservative fiber-grating model. I
a semiattractor: solitons with a larger energy relax to it
emission of radiation, while those with smaller energy co
pletely decay into radiation. The same conclusion is obtai
for solitons trapped between two repulsive inhomogeneit
In the full model with the loss and gain, all the stable pinn
pulses demonstrate persistent internal vibrations and e
sion of radiation. Sometimes, they are almost stationary s
tons, and in these cases the prediction based on the en
balance underestimates the necessary gain by 9% to 1
which is explained by the extra radiation loss. If the loss a
gain increase, the intrinsic vibrations become chaotic.

Collisions of free moving solitons with the ‘‘hot spot
were simulated too. The passage and capture regimes
identified for the solitons in the conservative and full mode
the capture is only partial, which actually implies splitting
the soliton. It was also found that, if a large part of t
soliton’s energy is radiated away, it may self-trap into se
ondary solitons.
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FIG. 13. Regions in the parametric plane (u,G2) of the conser-
vative model in which the moving soliton with fixedc50.1 passes
the defect or gets partially trapped.
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